A posteriori virtual element method for the acoustic vibration problem

被引:0
|
作者
F. Lepe
D. Mora
G. Rivera
I. Velásquez
机构
[1] Universidad del Bío-Bío,GIMNAP
[2] Universidad de Concepción,Departamento de Matemática
[3] Universidad de Los Lagos,CIsp2MA
[4] Universidad del Sinú Elías Bechara Zainúm,Departamento de Ciencias Exactas
来源
关键词
Virtual element method; Acoustic vibration problem; Polygonal meshes; A posteriori error estimates; Superconvergence; 65N30; 65N25; 70J30; 76M25;
D O I
暂无
中图分类号
学科分类号
摘要
In two dimensions, we propose and analyze an a posteriori error estimator for the acoustic spectral problem based on the virtual element method in H(div;Ω). Introducing an auxiliary unknown, we use the fact that the primal formulation of the acoustic problem is equivalent to a mixed formulation, in order to prove a superconvergence result, necessary to despise high order terms. Under the virtual element approach, we prove that our local indicator is reliable and globally efficient in the Lsp2-norm. We provide numerical results to assess the performance of the proposed error estimator.
引用
收藏
相关论文
共 50 条
  • [21] RESIDUAL A POSTERIORI ERROR ESTIMATION FOR THE VIRTUAL ELEMENT METHOD FOR ELLIPTIC PROBLEMS
    da Veiga, L. Beirao
    Manzini, G.
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2015, 49 (02): : 577 - 599
  • [22] Pointwise a Posteriori Error Analysis of a Finite Element Method for the Signorini Problem
    Rohit Khandelwal
    Kamana Porwal
    [J]. Journal of Scientific Computing, 2022, 91
  • [23] Pointwise a Posteriori Error Analysis of a Finite Element Method for the Signorini Problem
    Khandelwal, Rohit
    Porwal, Kamana
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2022, 91 (02)
  • [24] A priori and a posteriori error analysis for virtual element discretization of elliptic optimal control problem
    Qiming Wang
    Zhaojie Zhou
    [J]. Numerical Algorithms, 2022, 90 : 989 - 1015
  • [25] A priori and a posteriori error analysis for virtual element discretization of elliptic optimal control problem
    Wang, Qiming
    Zhou, Zhaojie
    [J]. NUMERICAL ALGORITHMS, 2022, 90 (03) : 989 - 1015
  • [26] The virtual element method for a minimal surface problem
    Paola Francesca Antonietti
    Silvia Bertoluzza
    Daniele Prada
    Marco Verani
    [J]. Calcolo, 2020, 57
  • [27] Finite element/infinite element method for acoustic scattering problem
    Yang Ruiliang
    Zhu Caixia
    Fan Xiaowei
    Song Gaoju
    [J]. 2009 INTERNATIONAL CONFERENCE ON MEASURING TECHNOLOGY AND MECHATRONICS AUTOMATION, VOL II, 2009, : 810 - +
  • [28] The virtual element method for a minimal surface problem
    Antonietti, Paola Francesca
    Bertoluzza, Silvia
    Prada, Daniele
    Verani, Marco
    [J]. CALCOLO, 2020, 57 (04)
  • [29] A virtual element method for the transmission eigenvalue problem
    Mora, David
    Velasquez, Ivan
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2018, 28 (14): : 2803 - 2831
  • [30] A mixed virtual element method for the Brinkman problem
    Caceres, Ernesto
    Gatica, Gabriel N.
    Sequeira, Filander A.
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2017, 27 (04): : 707 - 743