Pointwise a Posteriori Error Analysis of a Finite Element Method for the Signorini Problem

被引:0
|
作者
Rohit Khandelwal
Kamana Porwal
机构
[1] Indian Institute of Technology Delhi,Department of Mathematics
来源
关键词
Finite element method; A posteriori error estimates; Variational inequalities; Signorini problem; Continuous contact force density; Maximum norm;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we develop a posteriori error control of conforming finite element method in maximum norm for the one-body contact problem. The reliability and the efficiency of the error estimator is discussed. The upper and lower barriers of the exact solution u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{u}}$$\end{document} have been constructed by rectifying the discrete solution uh\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{u}}_{{\varvec{h}}}$$\end{document} properly and they are crucially used in obtaining the reliability estimates. Other key ingredients of the analysis are the sign property of the quasi-discrete contact force density as well as bounds on the Green’s matrix of the divergence type operator. Numerical experiments are presented for a two dimensional contact problems that exhibit reliability and efficiency of the error estimator confirming theoretical findings.
引用
收藏
相关论文
共 50 条