A posteriori virtual element method for the acoustic vibration problem

被引:0
|
作者
F. Lepe
D. Mora
G. Rivera
I. Velásquez
机构
[1] Universidad del Bío-Bío,GIMNAP
[2] Universidad de Concepción,Departamento de Matemática
[3] Universidad de Los Lagos,CIsp2MA
[4] Universidad del Sinú Elías Bechara Zainúm,Departamento de Ciencias Exactas
来源
关键词
Virtual element method; Acoustic vibration problem; Polygonal meshes; A posteriori error estimates; Superconvergence; 65N30; 65N25; 70J30; 76M25;
D O I
暂无
中图分类号
学科分类号
摘要
In two dimensions, we propose and analyze an a posteriori error estimator for the acoustic spectral problem based on the virtual element method in H(div;Ω). Introducing an auxiliary unknown, we use the fact that the primal formulation of the acoustic problem is equivalent to a mixed formulation, in order to prove a superconvergence result, necessary to despise high order terms. Under the virtual element approach, we prove that our local indicator is reliable and globally efficient in the Lsp2-norm. We provide numerical results to assess the performance of the proposed error estimator.
引用
收藏
相关论文
共 50 条
  • [31] Virtual element method for simplified friction problem
    Wang, Fei
    Wei, Huayi
    [J]. APPLIED MATHEMATICS LETTERS, 2018, 85 : 125 - 131
  • [32] A virtual element method for the Steklov eigenvalue problem
    Mora, David
    Rivera, Gonzalo
    Rodriguez, Rodolfo
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2015, 25 (08): : 1421 - 1445
  • [33] A posteriori error estimation for the dual mixed finite element method of the Stokes problem
    Farhloul, M
    Nicaise, S
    Paquet, L
    [J]. COMPTES RENDUS MATHEMATIQUE, 2004, 339 (07) : 513 - 518
  • [34] A posteriori error estimation for the dual mixed finite element method of the Stokes problem
    Farhloul, M.
    Nicaise, S.
    Paquet, L.
    [J]. NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2006, 27 (7-8) : 831 - 846
  • [35] A posteriori error estimation for a C1 virtual element method of Kirchhoff plates
    Chen, Mingqing
    Huang, Jianguo
    Lin, Sen
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2022, 120 : 132 - 150
  • [36] A posteriori error analysis and mesh adaptivity for a virtual element method solving the Stokes equations
    Manzini, Gianmarco
    Mazzia, Annamaria
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2024, 221 : 19 - 38
  • [37] Forward acoustic problem analysed by Boundary Element Method
    Sikora, Jan
    [J]. PRZEGLAD ELEKTROTECHNICZNY, 2023, 99 (01): : 274 - 277
  • [38] Finite/infinite element method for the acoustic radiating problem
    Yang, RL
    Fan, XW
    [J]. DIRECT AND INVERSE PROBLEMS OF ELECTROMAGNETIC AND ACOUSTIC WAVE THEORY, 2004, : 131 - 134
  • [39] A nonconforming Trefftz virtual element method for the Helmholtz problem
    Mascotto, Lorenzo
    Perugia, Ilaria
    Pichler, Alexander
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2019, 29 (09): : 1619 - 1656
  • [40] THE INTERIOR PENALTY VIRTUAL ELEMENT METHOD FOR THE BIHARMONIC PROBLEM
    Zhao, Jikun
    Mao, Shipeng
    Zhang, Bei
    Wang, Fei
    [J]. MATHEMATICS OF COMPUTATION, 2023, 92 (342) : 1543 - 1574