A posteriori error analysis and mesh adaptivity for a virtual element method solving the Stokes equations

被引:0
|
作者
Manzini, Gianmarco [1 ]
Mazzia, Annamaria [2 ]
机构
[1] CNR, Ist Matemat Applicata & Tecnol Informat, Via Ferrata 1, I-27100 Pavia, Italy
[2] Univ Padua, Dipartimento Ingn Civile Edile & Ambientale ICEA, I-35121 Padua, Italy
关键词
Incompressible Stokes equations; Conforming virtual element method; Error estimator; A posteriori error analysis; Mesh adaptivity; FORMULATION;
D O I
10.1016/j.matcom.2024.01.022
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We investigate an adaptive mesh strategy for the conforming virtual element method (VEM) of the Stokes equations proposed in Manzini and Mazzia (2022). The VEM generalizes the finite element approach to polygonal and polyehedral meshes in the framework of Galerkin approximation. The scheme of Manzini and Mazzia (2022) is inf-sup stable, converges optimally in the L2 and energy norm for all polynomial orders k >= 1, and the Stokes velocity is weakly divergence -free at the machine precision level. Our adaptive mesh strategy is based on a suitable residual -based a posteriori indicator. A posteriori analysis shows that such an indicator is theoretically efficient and reliable. Our numerical experiments show that it can be an efficient tool for solving scientific and engineering problems by applying it to a set of representative situations, including the case of a weakly singular solution as that of the "L-shape"domain.
引用
收藏
页码:19 / 38
页数:20
相关论文
共 50 条
  • [1] A posteriori error analysis and adaptivity for a VEM discretization of the Navier–Stokes equations
    Claudio Canuto
    Davide Rosso
    Advances in Computational Mathematics, 2023, 49
  • [2] An a posteriori finite element error analysis for the Stokes equations
    Jou, J
    Liu, JL
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 114 (02) : 333 - 343
  • [3] A Posteriori Error Estimates for the Virtual Element Method for the Stokes Problem
    Wang, Gang
    Wang, Ying
    He, Yinnian
    JOURNAL OF SCIENTIFIC COMPUTING, 2020, 84 (02)
  • [4] A Posteriori Error Estimates for the Virtual Element Method for the Stokes Problem
    Gang Wang
    Ying Wang
    Yinnian He
    Journal of Scientific Computing, 2020, 84
  • [5] A posteriori error analysis and adaptivity for a VEM discretization of the Navier-Stokes equations
    Canuto, Claudio
    Rosso, Davide
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2023, 49 (06)
  • [6] A posteriori error estimation and mesh adaptivity for finite volume and finite element methods
    Barth, TJ
    ADAPTIVE MESH REFINEMENT - THEORY AND APPLICATIONS, 2005, 41 : 183 - 202
  • [7] A posteriori error analysis of nonconforming finite-element discretization for the Stokes equations
    Bahaj, Mohamed
    Rachid, Anas
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2011, 88 (07) : 1497 - 1508
  • [8] A posteriori error analysis of a non-consistent virtual element method for reaction diffusion equations
    Huang, Jianguo
    Lin, Sen
    APPLIED MATHEMATICS LETTERS, 2021, 122
  • [9] A posteriori error estimates for the virtual element method
    Andrea Cangiani
    Emmanuil H. Georgoulis
    Tristan Pryer
    Oliver J. Sutton
    Numerische Mathematik, 2017, 137 : 857 - 893
  • [10] A posteriori error estimates for the virtual element method
    Cangiani, Andrea
    Georgoulis, Emmanuil H.
    Pryer, Tristan
    Sutton, Oliver J.
    NUMERISCHE MATHEMATIK, 2017, 137 (04) : 857 - 893