A posteriori virtual element method for the acoustic vibration problem

被引:0
|
作者
F. Lepe
D. Mora
G. Rivera
I. Velásquez
机构
[1] Universidad del Bío-Bío,GIMNAP
[2] Universidad de Concepción,Departamento de Matemática
[3] Universidad de Los Lagos,CIsp2MA
[4] Universidad del Sinú Elías Bechara Zainúm,Departamento de Ciencias Exactas
来源
关键词
Virtual element method; Acoustic vibration problem; Polygonal meshes; A posteriori error estimates; Superconvergence; 65N30; 65N25; 70J30; 76M25;
D O I
暂无
中图分类号
学科分类号
摘要
In two dimensions, we propose and analyze an a posteriori error estimator for the acoustic spectral problem based on the virtual element method in H(div;Ω). Introducing an auxiliary unknown, we use the fact that the primal formulation of the acoustic problem is equivalent to a mixed formulation, in order to prove a superconvergence result, necessary to despise high order terms. Under the virtual element approach, we prove that our local indicator is reliable and globally efficient in the Lsp2-norm. We provide numerical results to assess the performance of the proposed error estimator.
引用
收藏
相关论文
共 50 条
  • [41] THE INTERIOR PENALTY VIRTUAL ELEMENT METHOD FOR THE BIHARMONIC PROBLEM
    Zhao, Jikun
    Mao, Shipeng
    Zhang, Bei
    Wang, Fei
    MATHEMATICS OF COMPUTATION, 2023, 92 (342) : 1543 - 1574
  • [42] A PLANE WAVE VIRTUAL ELEMENT METHOD FOR THE HELMHOLTZ PROBLEM
    Perugia, Ilaria
    Pietra, Paola
    Russo, Alessandro
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2016, 50 (03): : 783 - 808
  • [43] A virtual element method for a biharmonic Steklov eigenvalue problem
    Monzon, Gabriel
    ADVANCES IN PURE AND APPLIED MATHEMATICS, 2019, 10 (04) : 325 - 337
  • [44] A Nonconforming Virtual Element Method for the Elliptic Interface Problem
    Wang, Haimei
    Zheng, Xianyan
    Chen, Jinru
    Wang, Feng
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2024, 14 (02) : 397 - 417
  • [45] A posteriori error estimates in finite element acoustic analysis
    Alonso, A
    Dello Russo, A
    Vampa, V
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 117 (02) : 105 - 119
  • [46] The a priori and a posteriori error estimates of Crouzeix-Raviart element for the fluid-solid vibration problem
    Li, Yanjun
    Han, Jiayu
    Yang, Yidu
    Bi, Hai
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2022, 99 (10) : 1968 - 1988
  • [47] Uniformly a posteriori error estimate for the finite element method to a model parameter dependent problem
    LMAM and School of Mathematical Sciences, Peking University, Beijing 100871, China
    J Comput Math, 2008, 5 (716-727):
  • [48] Augmented mixed finite element method for the Oseen problem: A priori and a posteriori error analyses
    Barrios, Tomas P.
    Manuel Cascon, J.
    Gonzalez, Maria
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 313 : 216 - 238
  • [49] A POSTERIORI ERROR ESTIMATE OF FINITE ELEMENT METHOD FOR THE OPTIMAL CONTROL WITH THE STATIONARY BENARD PROBLEM
    Chang, Yanzhen
    Yang, Danping
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2013, 31 (01) : 68 - 87
  • [50] Pointwise a posteriori error analysis of quadratic finite element method for the elliptic obstacle problem
    Khandelwal, Rohit
    Porwal, Kamana
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 412