A posteriori virtual element method for the acoustic vibration problem

被引:0
|
作者
F. Lepe
D. Mora
G. Rivera
I. Velásquez
机构
[1] Universidad del Bío-Bío,GIMNAP
[2] Universidad de Concepción,Departamento de Matemática
[3] Universidad de Los Lagos,CIsp2MA
[4] Universidad del Sinú Elías Bechara Zainúm,Departamento de Ciencias Exactas
来源
关键词
Virtual element method; Acoustic vibration problem; Polygonal meshes; A posteriori error estimates; Superconvergence; 65N30; 65N25; 70J30; 76M25;
D O I
暂无
中图分类号
学科分类号
摘要
In two dimensions, we propose and analyze an a posteriori error estimator for the acoustic spectral problem based on the virtual element method in H(div;Ω). Introducing an auxiliary unknown, we use the fact that the primal formulation of the acoustic problem is equivalent to a mixed formulation, in order to prove a superconvergence result, necessary to despise high order terms. Under the virtual element approach, we prove that our local indicator is reliable and globally efficient in the Lsp2-norm. We provide numerical results to assess the performance of the proposed error estimator.
引用
收藏
相关论文
共 50 条
  • [1] A posteriori virtual element method for the acoustic vibration problem
    Lepe, F.
    Mora, D.
    Rivera, G.
    Velasquez, I.
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2023, 49 (01)
  • [2] Correction: A posteriori virtual element method for the acoustic vibration problem
    F. Lepe
    D. Mora
    G. Rivera
    I. Velásquez
    [J]. Advances in Computational Mathematics, 2023, 49
  • [3] A posteriori virtual element method for the acoustic vibration problem (vol 49, 10, 2023)
    Lepe, F.
    Mora, D.
    Rivera, G.
    Velasquez, I.
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2023, 49 (02)
  • [4] A virtual element method for the acoustic vibration problem
    Beirao da Veiga, Lourenco
    Mora, David
    Rivera, Gonzalo
    Rodriguez, Rodolfo
    [J]. NUMERISCHE MATHEMATIK, 2017, 136 (03) : 725 - 763
  • [5] A virtual element method for the acoustic vibration problem
    Lourenço Beirão da Veiga
    David Mora
    Gonzalo Rivera
    Rodolfo Rodríguez
    [J]. Numerische Mathematik, 2017, 136 : 725 - 763
  • [6] A Posteriori Error Estimates for the Virtual Element Method for the Stokes Problem
    Wang, Gang
    Wang, Ying
    He, Yinnian
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2020, 84 (02)
  • [7] A Posteriori Error Estimates for the Virtual Element Method for the Stokes Problem
    Gang Wang
    Ying Wang
    Yinnian He
    [J]. Journal of Scientific Computing, 2020, 84
  • [8] A Posteriori Error Estimates of Virtual Element Method for a Simplified Friction Problem
    Yanling Deng
    Fei Wang
    Huayi Wei
    [J]. Journal of Scientific Computing, 2020, 83
  • [9] A Posteriori Error Estimates of Virtual Element Method for a Simplified Friction Problem
    Deng, Yanling
    Wang, Fei
    Wei, Huayi
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2020, 83 (03)
  • [10] A posteriori error estimates for a Virtual Element Method for the Steklov eigenvalue problem
    Mora, David
    Rivera, Gonzalo
    Rodriguez, Rodolfo
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (09) : 2172 - 2190