Independent domination in subcubic graphs

被引:0
|
作者
A. Akbari
S. Akbari
A. Doosthosseini
Z. Hadizadeh
Michael A. Henning
A. Naraghi
机构
[1] Sharif University of Technology,Department of Mathematical Sciences
[2] University of Johannesburg,Department of Mathematics and Applied Mathematics
来源
关键词
Independent domination; Cubic graph; Subcubic graph; 05C69;
D O I
暂无
中图分类号
学科分类号
摘要
A set S of vertices in a graph G is a dominating set if every vertex not in S is adjacent to a vertex in S. If, in addition, S is an independent set, then S is an independent dominating set. The independent domination number i(G) of G is the minimum cardinality of an independent dominating set in G. In Goddard and Henning (Discrete Math 313:839–854, 2013) conjectured that if G is a connected cubic graph of order n, then i(G)≤38n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i(G) \le \frac{3}{8}n$$\end{document}, except if G is the complete bipartite graph K3,3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{3,3}$$\end{document} or the 5-prism C5□K2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_5 \, \Box \, K_2$$\end{document}. Further they construct two infinite families of connected cubic graphs with independent domination three-eighths their order. In this paper, we provide a new family of connected cubic graphs G of order n such that i(G)=38n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i(G) = \frac{3}{8}n$$\end{document}. We also show that if G is a subcubic graph of order n with no isolated vertex, then i(G)≤12n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i(G) \le \frac{1}{2}n$$\end{document}, and we characterize the graphs achieving equality in this bound.
引用
收藏
页码:28 / 41
页数:13
相关论文
共 50 条
  • [1] Independent domination in subcubic graphs
    Akbari, A.
    Akbari, S.
    Doosthosseini, A.
    Hadizadeh, Z.
    Henning, Michael A.
    Naraghi, A.
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2022, 43 (01) : 28 - 41
  • [2] Independent domination versus packing in subcubic graphs
    Cho, Eun-Kyung
    Kim, Minki
    [J]. DISCRETE APPLIED MATHEMATICS, 2024, 357 : 132 - 134
  • [3] Independent domination in subcubic graphs of girth at least six
    Abrishami, Gholamreza
    Henning, Michael A.
    [J]. DISCRETE MATHEMATICS, 2018, 341 (01) : 155 - 164
  • [4] Independent domination in subcubic bipartite graphs of girth at least six
    Henning, Michael A.
    Loewenstein, Christian
    Rautenbach, Dieter
    [J]. DISCRETE APPLIED MATHEMATICS, 2014, 162 : 399 - 403
  • [5] Exponential Domination in Subcubic Graphs
    Bessy, Stephane
    Ochem, Pascal
    Rautenbach, Dieter
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2016, 23 (04):
  • [6] Broadcast Domination in Subcubic Graphs
    Yang, Wei
    Wu, Baoyindureng
    [J]. GRAPHS AND COMBINATORICS, 2022, 38 (06)
  • [7] Broadcast Domination in Subcubic Graphs
    Wei Yang
    Baoyindureng Wu
    [J]. Graphs and Combinatorics, 2022, 38
  • [8] Triangles and (Total) Domination in Subcubic Graphs
    Babikir, Ammar
    Henning, Michael A.
    [J]. GRAPHS AND COMBINATORICS, 2022, 38 (02)
  • [9] HEREDITARY EQUALITY OF DOMINATION AND EXPONENTIAL DOMINATION IN SUBCUBIC GRAPHS
    Chen, Xue-Gang
    Wang, Yu-Feng
    Wu, Xiao-Fei
    [J]. DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2021, 41 (04) : 1067 - 1075
  • [10] Triangles and (Total) Domination in Subcubic Graphs
    Ammar Babikir
    Michael A. Henning
    [J]. Graphs and Combinatorics, 2022, 38