Broadcast Domination in Subcubic Graphs

被引:0
|
作者
Yang, Wei [1 ]
Wu, Baoyindureng [1 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Xinjiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Broadcast domination; Cubic graphs; Dominating set; Subcubic graphs; INDEPENDENT DOMINATION; BOUNDS; GIRTH;
D O I
10.1007/s00373-022-02592-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a graph G, a function f : V(G) ->{0, 1, 2,..., diam(G)} is called a dominating broadcast on G if for each vertex u is an element of V(G), there exists a vertex v in G with f(nu) > 0 such that d(G)(u, v) <= f(nu), where d(G)(u, nu) denotes the distance between u and nu in G. The cost of a dominating broadcast f is Sigma(nu is an element of V(G))f(nu). The broadcast domination number of G, denoted by gamma(b)(G), is the minimum cost of a dominating broadcast in G. For an integer k >= 1, a function f : V(G) -> {0, 1, 2,..., k} is called a k-limited dominating broadcast in G if for each vertex u is an element of V(G), there exists a vertex v in G with f(nu) > 0 such that d(G)(u, nu) <= f(nu). The cost of a k-limited dominating broadcast f is Sigma(nu is an element of V(G))integral(nu). The k-limited broadcast domination number of G, denoted by gamma(b,k)(G), is the minimum cost of a k-limited dominating broadcast in G. Henning, MacGillivray, Yang (Discrete Appl. Math. 285 (2020) 691-706) posed a conjecture which says that G is a cubic graph on n vertices, then gamma(b,2)(G) <= n/3. In this paper, we show that if G is a cubic graph on n vertices, then gamma(b)(G) <= n/3, and this bound is sharp.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] Broadcast Domination in Subcubic Graphs
    Wei Yang
    Baoyindureng Wu
    [J]. Graphs and Combinatorics, 2022, 38
  • [2] 2-limited broadcast domination in subcubic graphs
    Henning, Michael A.
    MacGillivray, Gary
    Yang, Frank
    [J]. DISCRETE APPLIED MATHEMATICS, 2020, 285 : 691 - 706
  • [3] Independent domination in subcubic graphs
    Akbari, A.
    Akbari, S.
    Doosthosseini, A.
    Hadizadeh, Z.
    Henning, Michael A.
    Naraghi, A.
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2022, 43 (01) : 28 - 41
  • [4] Exponential Domination in Subcubic Graphs
    Bessy, Stephane
    Ochem, Pascal
    Rautenbach, Dieter
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2016, 23 (04):
  • [5] Independent domination in subcubic graphs
    A. Akbari
    S. Akbari
    A. Doosthosseini
    Z. Hadizadeh
    Michael A. Henning
    A. Naraghi
    [J]. Journal of Combinatorial Optimization, 2022, 43 : 28 - 41
  • [6] Triangles and (Total) Domination in Subcubic Graphs
    Babikir, Ammar
    Henning, Michael A.
    [J]. GRAPHS AND COMBINATORICS, 2022, 38 (02)
  • [7] HEREDITARY EQUALITY OF DOMINATION AND EXPONENTIAL DOMINATION IN SUBCUBIC GRAPHS
    Chen, Xue-Gang
    Wang, Yu-Feng
    Wu, Xiao-Fei
    [J]. DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2021, 41 (04) : 1067 - 1075
  • [8] Triangles and (Total) Domination in Subcubic Graphs
    Ammar Babikir
    Michael A. Henning
    [J]. Graphs and Combinatorics, 2022, 38
  • [9] Independent domination versus packing in subcubic graphs
    Cho, Eun-Kyung
    Kim, Minki
    [J]. DISCRETE APPLIED MATHEMATICS, 2024, 357 : 132 - 134
  • [10] Independent domination in subcubic graphs of girth at least six
    Abrishami, Gholamreza
    Henning, Michael A.
    [J]. DISCRETE MATHEMATICS, 2018, 341 (01) : 155 - 164