Independent domination in subcubic graphs

被引:5
|
作者
Akbari, A. [1 ]
Akbari, S. [1 ]
Doosthosseini, A. [1 ]
Hadizadeh, Z. [1 ]
Henning, Michael A. [2 ]
Naraghi, A. [1 ]
机构
[1] Sharif Univ Technol, Dept Math Sci, Tehran, Iran
[2] Univ Johannesburg, Dept Math & Appl Math, Johannesburg, South Africa
关键词
Independent domination; Cubic graph; Subcubic graph;
D O I
10.1007/s10878-021-00743-z
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A set S of vertices in a graph G is a dominating set if every vertex not in S is adjacent to a vertex in S. If, in addition, S is an independent set, then S is an independent dominating set. The independent domination number i(G) of G is the minimum cardinality of an independent dominating set in G. In Goddard and Henning (Discrete Math 313:839-854, 2013) conjectured that if G is a connected cubic graph of order n, then i(G) <= 3/8n, except if G is the complete bipartite graph K-3,K-3 or the 5-prism C-5 square K-2. Further they construct two infinite families of connected cubic graphs with independent domination three-eighths their order. In this paper, we provide a new family of connected cubic graphs G of order n such that i(G) = 3/8n. We also show that if G is a subcubic graph of order n with no isolated vertex, then i (G) <= 1/2n, and we characterize the graphs achieving equality in this bound.
引用
收藏
页码:28 / 41
页数:14
相关论文
共 50 条
  • [1] Independent domination in subcubic graphs
    A. Akbari
    S. Akbari
    A. Doosthosseini
    Z. Hadizadeh
    Michael A. Henning
    A. Naraghi
    [J]. Journal of Combinatorial Optimization, 2022, 43 : 28 - 41
  • [2] Independent domination versus packing in subcubic graphs
    Cho, Eun-Kyung
    Kim, Minki
    [J]. DISCRETE APPLIED MATHEMATICS, 2024, 357 : 132 - 134
  • [3] Independent domination in subcubic graphs of girth at least six
    Abrishami, Gholamreza
    Henning, Michael A.
    [J]. DISCRETE MATHEMATICS, 2018, 341 (01) : 155 - 164
  • [4] Independent domination in subcubic bipartite graphs of girth at least six
    Henning, Michael A.
    Loewenstein, Christian
    Rautenbach, Dieter
    [J]. DISCRETE APPLIED MATHEMATICS, 2014, 162 : 399 - 403
  • [5] Exponential Domination in Subcubic Graphs
    Bessy, Stephane
    Ochem, Pascal
    Rautenbach, Dieter
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2016, 23 (04):
  • [6] Broadcast Domination in Subcubic Graphs
    Yang, Wei
    Wu, Baoyindureng
    [J]. GRAPHS AND COMBINATORICS, 2022, 38 (06)
  • [7] Broadcast Domination in Subcubic Graphs
    Wei Yang
    Baoyindureng Wu
    [J]. Graphs and Combinatorics, 2022, 38
  • [8] Triangles and (Total) Domination in Subcubic Graphs
    Babikir, Ammar
    Henning, Michael A.
    [J]. GRAPHS AND COMBINATORICS, 2022, 38 (02)
  • [9] HEREDITARY EQUALITY OF DOMINATION AND EXPONENTIAL DOMINATION IN SUBCUBIC GRAPHS
    Chen, Xue-Gang
    Wang, Yu-Feng
    Wu, Xiao-Fei
    [J]. DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2021, 41 (04) : 1067 - 1075
  • [10] Triangles and (Total) Domination in Subcubic Graphs
    Ammar Babikir
    Michael A. Henning
    [J]. Graphs and Combinatorics, 2022, 38