Independent domination in subcubic bipartite graphs of girth at least six

被引:8
|
作者
Henning, Michael A. [1 ]
Loewenstein, Christian [2 ]
Rautenbach, Dieter [2 ]
机构
[1] Univ Johannesburg, Dept Math, ZA-2006 Auckland Pk, South Africa
[2] Univ Ulm, Inst Optimizat & Operat Res, D-89081 Ulm, Germany
基金
新加坡国家研究基金会;
关键词
Independent domination; Cubic graphs; REGULAR GRAPHS; NUMBER;
D O I
10.1016/j.dam.2013.08.035
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A set S of vertices of a graph G is an independent dominating set of G if S is an independent set and every vertex not in S is adjacent to a vertex in S. The independent domination number of G, denoted by i(G), is the minimum cardinality of an independent dominating set of G. In this paper, we show that if G is a bipartite cubic graph of order n and of girth at least 6, then i(G) <= 4n/11. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:399 / 403
页数:5
相关论文
共 50 条
  • [1] Independent domination in subcubic graphs of girth at least six
    Abrishami, Gholamreza
    Henning, Michael A.
    [J]. DISCRETE MATHEMATICS, 2018, 341 (01) : 155 - 164
  • [2] Independent domination in subcubic graphs
    Akbari, A.
    Akbari, S.
    Doosthosseini, A.
    Hadizadeh, Z.
    Henning, Michael A.
    Naraghi, A.
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2022, 43 (01) : 28 - 41
  • [3] An Improved Upper Bound on the Independent Domination Number in Cubic Graphs of Girth at Least Six
    Gholamreza Abrishami
    Michael A. Henning
    [J]. Graphs and Combinatorics, 2022, 38
  • [4] An Improved Upper Bound on the Independent Domination Number in Cubic Graphs of Girth at Least Six
    Abrishami, Gholamreza
    Henning, Michael A.
    [J]. GRAPHS AND COMBINATORICS, 2022, 38 (02)
  • [5] Independent domination in subcubic graphs
    A. Akbari
    S. Akbari
    A. Doosthosseini
    Z. Hadizadeh
    Michael A. Henning
    A. Naraghi
    [J]. Journal of Combinatorial Optimization, 2022, 43 : 28 - 41
  • [6] Independent domination versus packing in subcubic graphs
    Cho, Eun-Kyung
    Kim, Minki
    [J]. DISCRETE APPLIED MATHEMATICS, 2024, 357 : 132 - 134
  • [7] Independent Domination in Bipartite Cubic Graphs
    Christoph Brause
    Michael A. Henning
    [J]. Graphs and Combinatorics, 2019, 35 : 881 - 912
  • [8] Independent Domination in Bipartite Cubic Graphs
    Brause, Christoph
    Henning, Michael A.
    [J]. GRAPHS AND COMBINATORICS, 2019, 35 (04) : 881 - 912
  • [9] A note on independent domination in graphs of girth 6
    Haviland, Julie
    [J]. AUSTRALASIAN JOURNAL OF COMBINATORICS, 2008, 42 : 171 - 175
  • [10] A note on independent domination in graphs of girth 5
    Haviland, Julie
    [J]. AUSTRALASIAN JOURNAL OF COMBINATORICS, 2008, 40 : 301 - 304