Broadcast Domination in Subcubic Graphs

被引:0
|
作者
Wei Yang
Baoyindureng Wu
机构
[1] Xinjiang University,College of Mathematics and System Sciences
来源
Graphs and Combinatorics | 2022年 / 38卷
关键词
Broadcast domination; Cubic graphs; Dominating set; Subcubic graphs;
D O I
暂无
中图分类号
学科分类号
摘要
For a graph G, a function f:V(G)→{0,1,2,…,diam(G)}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:V(G)\rightarrow \{0,1,2,\ldots , diam(G)\}$$\end{document} is called a dominating broadcast on G if for each vertex u∈V(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u\in V(G)$$\end{document}, there exists a vertex v in G with f(v)>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(v)>0$$\end{document} such that dG(u,v)≤f(v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_{G}(u,v)\le f(v)$$\end{document}, where dG(u,v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_{G}(u,v)$$\end{document} denotes the distance between u and v in G. The cost of a dominating broadcast f is ∑v∈V(G)f(v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum _{v\in V(G)}f(v)$$\end{document}. The broadcast domination number of G, denoted by γb(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _b(G)$$\end{document}, is the minimum cost of a dominating broadcast in G. For an integer k≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 1$$\end{document}, a function f:V(G)→{0,1,2,…,k}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:V(G) \rightarrow \{0,1,2,\ldots ,k\}$$\end{document} is called a k-limited dominating broadcast in G if for each vertex u∈V(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u\in V(G)$$\end{document}, there exists a vertex v in G with f(v)>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(v)>0$$\end{document} such that dG(u,v)≤f(v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_{G}(u,v)\le f(v)$$\end{document}. The cost of a k-limited dominating broadcast f is ∑v∈V(G)f(v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum _{v\in V(G)}f(v)$$\end{document}. The k-limited broadcast domination number of G, denoted by γb,k(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{b,k}(G)$$\end{document}, is the minimum cost of a k-limited dominating broadcast in G. Henning, MacGillivray, Yang (Discrete Appl. Math. 285 (2020) 691-706) posed a conjecture which says that G is a cubic graph on n vertices, then γb,2(G)≤n3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{b,2}(G)\le \frac{n}{3}$$\end{document}. In this paper, we show that if G is a cubic graph on n vertices, then γb(G)≤n3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _b(G) \le \frac{n}{3}$$\end{document}, and this bound is sharp.
引用
收藏
相关论文
共 50 条
  • [1] Broadcast Domination in Subcubic Graphs
    Yang, Wei
    Wu, Baoyindureng
    [J]. GRAPHS AND COMBINATORICS, 2022, 38 (06)
  • [2] 2-limited broadcast domination in subcubic graphs
    Henning, Michael A.
    MacGillivray, Gary
    Yang, Frank
    [J]. DISCRETE APPLIED MATHEMATICS, 2020, 285 : 691 - 706
  • [3] Independent domination in subcubic graphs
    Akbari, A.
    Akbari, S.
    Doosthosseini, A.
    Hadizadeh, Z.
    Henning, Michael A.
    Naraghi, A.
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2022, 43 (01) : 28 - 41
  • [4] Exponential Domination in Subcubic Graphs
    Bessy, Stephane
    Ochem, Pascal
    Rautenbach, Dieter
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2016, 23 (04):
  • [5] Independent domination in subcubic graphs
    A. Akbari
    S. Akbari
    A. Doosthosseini
    Z. Hadizadeh
    Michael A. Henning
    A. Naraghi
    [J]. Journal of Combinatorial Optimization, 2022, 43 : 28 - 41
  • [6] Triangles and (Total) Domination in Subcubic Graphs
    Babikir, Ammar
    Henning, Michael A.
    [J]. GRAPHS AND COMBINATORICS, 2022, 38 (02)
  • [7] HEREDITARY EQUALITY OF DOMINATION AND EXPONENTIAL DOMINATION IN SUBCUBIC GRAPHS
    Chen, Xue-Gang
    Wang, Yu-Feng
    Wu, Xiao-Fei
    [J]. DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2021, 41 (04) : 1067 - 1075
  • [8] Triangles and (Total) Domination in Subcubic Graphs
    Ammar Babikir
    Michael A. Henning
    [J]. Graphs and Combinatorics, 2022, 38
  • [9] Independent domination versus packing in subcubic graphs
    Cho, Eun-Kyung
    Kim, Minki
    [J]. DISCRETE APPLIED MATHEMATICS, 2024, 357 : 132 - 134
  • [10] Independent domination in subcubic graphs of girth at least six
    Abrishami, Gholamreza
    Henning, Michael A.
    [J]. DISCRETE MATHEMATICS, 2018, 341 (01) : 155 - 164