Independent domination in subcubic graphs

被引:0
|
作者
A. Akbari
S. Akbari
A. Doosthosseini
Z. Hadizadeh
Michael A. Henning
A. Naraghi
机构
[1] Sharif University of Technology,Department of Mathematical Sciences
[2] University of Johannesburg,Department of Mathematics and Applied Mathematics
来源
关键词
Independent domination; Cubic graph; Subcubic graph; 05C69;
D O I
暂无
中图分类号
学科分类号
摘要
A set S of vertices in a graph G is a dominating set if every vertex not in S is adjacent to a vertex in S. If, in addition, S is an independent set, then S is an independent dominating set. The independent domination number i(G) of G is the minimum cardinality of an independent dominating set in G. In Goddard and Henning (Discrete Math 313:839–854, 2013) conjectured that if G is a connected cubic graph of order n, then i(G)≤38n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i(G) \le \frac{3}{8}n$$\end{document}, except if G is the complete bipartite graph K3,3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{3,3}$$\end{document} or the 5-prism C5□K2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_5 \, \Box \, K_2$$\end{document}. Further they construct two infinite families of connected cubic graphs with independent domination three-eighths their order. In this paper, we provide a new family of connected cubic graphs G of order n such that i(G)=38n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i(G) = \frac{3}{8}n$$\end{document}. We also show that if G is a subcubic graph of order n with no isolated vertex, then i(G)≤12n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i(G) \le \frac{1}{2}n$$\end{document}, and we characterize the graphs achieving equality in this bound.
引用
收藏
页码:28 / 41
页数:13
相关论文
共 50 条
  • [31] Independent domination in directed graphs
    Cary, Michael
    Cary, Jonathan
    Prabhu, Savari
    [J]. COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2021, 6 (01) : 67 - 80
  • [32] Maximum Independent Sets in Subcubic Graphs: New Results
    Harutyunyan, Ararat
    Lampis, Michael
    Lozin, Vadim
    Monnot, Jerome
    [J]. GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE (WG 2019), 2019, 11789 : 40 - 52
  • [33] INDEPENDENT TRANSVERSAL DOMINATION IN GRAPHS
    Hamid, Ismail Sahul
    [J]. DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2012, 32 (01) : 5 - 17
  • [34] INDEPENDENT DOMINATION IN REGULAR GRAPHS
    HAVILAND, J
    [J]. DISCRETE MATHEMATICS, 1995, 143 (1-3) : 275 - 280
  • [35] Independent domination and matchings in graphs
    Rautenbach, D
    Volkmann, L
    [J]. DISCRETE MATHEMATICS, 2002, 259 (1-3) : 325 - 330
  • [36] Independent Domination in Cubic Graphs
    Dorbec, Paul
    Henning, Michael A.
    Montassier, Mickael
    Southey, Justin
    [J]. JOURNAL OF GRAPH THEORY, 2015, 80 (04) : 329 - 349
  • [37] Independent Domination Subdivision in Graphs
    Babikir, Ammar
    Dettlaff, Magda
    Henning, Michael A.
    Lemanska, Magdalena
    [J]. GRAPHS AND COMBINATORICS, 2021, 37 (03) : 691 - 709
  • [38] Independent Rainbow Domination of Graphs
    Zehui Shao
    Zepeng Li
    Aljoša Peperko
    Jiafu Wan
    Janez Žerovnik
    [J]. Bulletin of the Malaysian Mathematical Sciences Society, 2019, 42 : 417 - 435
  • [39] Independent Rainbow Domination of Graphs
    Shao, Zehui
    Li, Zepeng
    Peperko, Aljosa
    Wan, Jiafu
    Zerovnik, Janez
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2019, 42 (02) : 417 - 435
  • [40] Ultimate greedy approximation of independent sets in subcubic graphs
    Krysta, Piotr
    Mari, Mathieu
    Zhi, Nan
    [J]. PROCEEDINGS OF THE 2020 ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2020, : 1436 - 1455