Asymptotic Behavior of Inflated Lattice Polygons

被引:0
|
作者
Mithun K. Mitra
Gautam I. Menon
R. Rajesh
机构
[1] The Institute of Mathematical Sciences,
来源
关键词
Lattice polygons; Vesicles; Exact enumeration; Wulff construction;
D O I
暂无
中图分类号
学科分类号
摘要
We study the inflated phase of two dimensional lattice polygons with fixed perimeter N and variable area, associating a weight exp [pA−Jb] to a polygon with area A and b bends. For convex and column-convex polygons, we calculate the average area for positive values of the pressure. For large pressures, the area has the asymptotic behaviour \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\langle A\rangle/A_{\max}=1-K(J)/\tilde {p}^{2}+\mathcal{O}(\rho^{-\tilde {p}})$\end{document} , where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tilde {p}=pN\gg 1$\end{document} , and ρ<1. The constant K(J) is found to be the same for both types of polygons. We argue that self-avoiding polygons should exhibit the same asymptotic behavior. For self-avoiding polygons, our predictions are in good agreement with exact enumeration data for J=0 and Monte Carlo simulations for J≠0. We also study polygons where self-intersections are allowed, verifying numerically that the asymptotic behavior described above continues to hold.
引用
收藏
页码:393 / 404
页数:11
相关论文
共 50 条
  • [1] Asymptotic behavior of inflated lattice polygons
    Mitra, Mithun K.
    Menon, Gautam I.
    Rajesh, R.
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2008, 131 (03) : 393 - 404
  • [2] Asymptotic behavior of the shape of planar polygons by linear flows
    Vieira, Evilson
    Garcia, Ronaldo
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 557 : 508 - 528
  • [3] NONCROSSING LATTICE POLYGONS
    RUSHBROOKE, GS
    EVE, J
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1959, 31 (05): : 1333 - 1334
  • [4] POLYGONS ON THE HONEYCOMB LATTICE
    ENTING, IG
    GUTTMANN, AJ
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (09): : 1371 - 1384
  • [5] CONVEX LATTICE POLYGONS
    WILLS, JM
    [J]. COMMENTARII MATHEMATICI HELVETICI, 1973, 48 (02) : 188 - 194
  • [6] ASYMPTOTIC BEHAVIOR OF SELFAVOIDING WALKS AND RETURNS ON A LATTICE
    SYKES, MF
    WATTS, MG
    ROBERTS, PD
    GUTTMANN, AJ
    [J]. JOURNAL OF PHYSICS PART A GENERAL, 1972, 5 (05): : 653 - &
  • [7] Asymptotic enumeration of convex polygons
    Stark, D
    Wormald, NC
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 1997, 80 (02) : 196 - 217
  • [8] Asymptotic behaviour of convex and column-convex lattice polygons with fixed area and varying perimeter
    Mitra, Mithun K.
    Menon, Gautam I.
    Rajesh, R.
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2010,
  • [9] INFLATED VESICLES - A LATTICE MODEL
    BAUMGARTNER, A
    [J]. PHYSICA A, 1992, 190 (1-2): : 63 - 74
  • [10] Lattice polygons with two interior lattice points
    Wei, X.
    Ding, R.
    [J]. MATHEMATICAL NOTES, 2012, 91 (5-6) : 868 - 877