Asymptotic enumeration of convex polygons

被引:0
|
作者
Stark, D [1 ]
Wormald, NC [1 ]
机构
[1] UNIV MELBOURNE,DEPT MATH,PARKVILLE,VIC 3052,AUSTRALIA
基金
澳大利亚研究理事会;
关键词
D O I
10.1006/jcta.1997.2802
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A polygon is an elementary (self-avoiding) cycle in the hypercubic lattice Z(d) taking at least one step in every dimension. A polygon on Z(d) is said to be convex if its length is exactly tu ice the sum of the side lengths of the smallest hypercube containing it. The number of d-dimensional convex polygons p(n,d) of length 2n with d(n) --> infinity is asymptotically P-n,P-d similar to exp (2(2n - d)/-2n - 1) (2n - 1)! (2 pi b(r))(-1/2) r(-2n+d) sinh(d)r, where r = r(n, d) is the unique solution of r coth r = 2n/d - 1 and b(r) = d( r coth r - r(2)/sinh(2) r). The convergence is uniform over all d greater than or equal to omega(n) for any function omega(n) --> infinity. When d is constant the exponential is replaced with (1 - d(-1))(2d). These results are proved by asymptotically enumerating a larger class of combinatorial objects called convex proto-polygons by the saddle-point method and then finding the asymptotic probability a randomly chosen convex proto-polygon is a convex polygon. (C) 1997 Academic Press.
引用
收藏
页码:196 / 217
页数:22
相关论文
共 50 条
  • [1] Enumeration of three-dimensional convex polygons
    Mireille Bousquet-Mélou
    Anthony J. Guttmann
    [J]. Annals of Combinatorics, 1997, 1 (1) : 27 - 53
  • [2] ENUMERATION OF ALMOST-CONVEX POLYGONS ON THE SQUARE LATTICE
    ENTING, IG
    GUTTMANN, AJ
    RICHMOND, LB
    WORMALD, NC
    [J]. RANDOM STRUCTURES & ALGORITHMS, 1992, 3 (04) : 445 - 461
  • [3] THE ASYMPTOTIC ENUMERATION OF ROOTED CONVEX POLYHEDRA
    BENDER, EA
    RICHMOND, LB
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 1984, 36 (03) : 276 - 283
  • [4] A method for the enumeration of various classes of column-convex polygons
    BousquetMelou, M
    [J]. DISCRETE MATHEMATICS, 1996, 154 (1-3) : 1 - 25
  • [5] PROBABILITY POLYGONS IN CONVEX POLYGONS
    BUCHTA, C
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1984, 347 : 212 - 220
  • [6] DISSECTIONS OF POLYGONS INTO CONVEX POLYGONS
    Zak, Andrzej
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 2010, 20 (02) : 223 - 244
  • [7] Asymptotic behaviour of convex and column-convex lattice polygons with fixed area and varying perimeter
    Mitra, Mithun K.
    Menon, Gautam I.
    Rajesh, R.
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2010,
  • [8] Approximation of convex polygons by polygons
    Koutschan, Christoph
    Ponomarchuk, Anton
    Schicho, Josef
    [J]. 2021 23RD INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING (SYNASC 2021), 2021, : 91 - 98
  • [9] CONVEX POLYGONS AND SEPARATION OF CONVEX
    Rivera-Campo, Eduardo
    Urrutia, Jorge
    [J]. STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2022, 59 (3-4) : 274 - 283
  • [10] Algorithmic enumeration of surrounding polygons
    Yamanaka, Katsuhisa
    Avis, David
    Horiyama, Takashi
    Okamoto, Yoshio
    Uehara, Ryuhei
    Yamauchi, Tanami
    [J]. DISCRETE APPLIED MATHEMATICS, 2021, 303 : 305 - 313