POLYGONS ON THE HONEYCOMB LATTICE

被引:38
|
作者
ENTING, IG [1 ]
GUTTMANN, AJ [1 ]
机构
[1] UNIV MELBOURNE,DEPT MATH,PARKVILLE,VIC 3052,AUSTRALIA
来源
关键词
D O I
10.1088/0305-4470/22/9/024
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:1371 / 1384
页数:14
相关论文
共 50 条
  • [1] UNIDIRECTIONAL-CONVEX POLYGONS ON THE HONEYCOMB LATTICE
    LIN, KY
    WU, FY
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (21): : 5003 - 5010
  • [2] Honeycomb lattice polygons and walks as a test of series analysis techniques
    Jensen, Iwan
    [J]. INTERNATIONAL WORKSHOP ON STATISTICAL MECHANICS AND COMBINATORICS: COUNTING COMPLEXITY, 2006, 42 : 163 - 178
  • [3] Universal amplitude combinations for self-avoiding walks and polygons on the honeycomb lattice
    Lin, KY
    [J]. PHYSICA A, 2000, 275 (1-2): : 197 - 206
  • [4] NONCROSSING LATTICE POLYGONS
    RUSHBROOKE, GS
    EVE, J
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1959, 31 (05): : 1333 - 1334
  • [5] CONVEX LATTICE POLYGONS
    WILLS, JM
    [J]. COMMENTARII MATHEMATICI HELVETICI, 1973, 48 (02) : 188 - 194
  • [6] THE NUMBER OF CONVEX POLYGONS ON THE SQUARE AND HONEYCOMB LATTICES
    GUTTMANN, AJ
    ENTING, IG
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (08): : L467 - L474
  • [7] Lattice polygons with two interior lattice points
    Wei, X.
    Ding, R.
    [J]. MATHEMATICAL NOTES, 2012, 91 (5-6) : 868 - 877
  • [8] Lattice polygons with two interior lattice points
    X. Wei
    R. Ding
    [J]. Mathematical Notes, 2012, 91 : 868 - 877
  • [9] Foldable Triangulations of Lattice Polygons
    Joswig, Michael
    Ziegler, Guenter M.
    [J]. AMERICAN MATHEMATICAL MONTHLY, 2014, 121 (08): : 706 - 710
  • [10] ON THE AREA OF SQUARE LATTICE POLYGONS
    ENTING, IG
    GUTTMANN, AJ
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1990, 58 (3-4) : 475 - 484