Asymptotic behavior of inflated lattice polygons

被引:2
|
作者
Mitra, Mithun K. [1 ]
Menon, Gautam I. [1 ]
Rajesh, R. [1 ]
机构
[1] Inst Math Sci, Madras 600113, Tamil Nadu, India
关键词
lattice polygons; vesicles; exact enumeration; wulff construction;
D O I
10.1007/s10955-008-9512-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the inflated phase of two dimensional lattice polygons with fixed perimeter N and variable area, associating a weight exp[pA - Jb] to a polygon with area A and b bends. For convex and column-convex polygons, we calculate the average area for positive values of the pressure. For large pressures, the area has the asymptotic behaviour [A]/A(max) = 1 - K(J)/(p) over tilde (2) + O(rho(-(p) over tilde)), where (p) over tilde = pN >> 1, and rho <1. is found to be the same for both types of polygons. We argue that self- avoiding polygons should exhibit the same asymptotic behavior. For self-avoiding polygons, our predictions are in good agreement with exact enumeration data for J = 0 and Monte Carlo simulations for J not equal 0. We also study polygons where self-intersections are allowed, verifying numerically that the asymptotic behavior described above continues to hold.
引用
收藏
页码:393 / 404
页数:12
相关论文
共 50 条
  • [1] Asymptotic Behavior of Inflated Lattice Polygons
    Mithun K. Mitra
    Gautam I. Menon
    R. Rajesh
    [J]. Journal of Statistical Physics, 2008, 131 : 393 - 404
  • [2] Asymptotic behavior of the shape of planar polygons by linear flows
    Vieira, Evilson
    Garcia, Ronaldo
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 557 : 508 - 528
  • [3] NONCROSSING LATTICE POLYGONS
    RUSHBROOKE, GS
    EVE, J
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1959, 31 (05): : 1333 - 1334
  • [4] POLYGONS ON THE HONEYCOMB LATTICE
    ENTING, IG
    GUTTMANN, AJ
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (09): : 1371 - 1384
  • [5] CONVEX LATTICE POLYGONS
    WILLS, JM
    [J]. COMMENTARII MATHEMATICI HELVETICI, 1973, 48 (02) : 188 - 194
  • [6] ASYMPTOTIC BEHAVIOR OF SELFAVOIDING WALKS AND RETURNS ON A LATTICE
    SYKES, MF
    WATTS, MG
    ROBERTS, PD
    GUTTMANN, AJ
    [J]. JOURNAL OF PHYSICS PART A GENERAL, 1972, 5 (05): : 653 - &
  • [7] Asymptotic enumeration of convex polygons
    Stark, D
    Wormald, NC
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 1997, 80 (02) : 196 - 217
  • [8] Asymptotic behaviour of convex and column-convex lattice polygons with fixed area and varying perimeter
    Mitra, Mithun K.
    Menon, Gautam I.
    Rajesh, R.
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2010,
  • [9] INFLATED VESICLES - A LATTICE MODEL
    BAUMGARTNER, A
    [J]. PHYSICA A, 1992, 190 (1-2): : 63 - 74
  • [10] Lattice polygons with two interior lattice points
    Wei, X.
    Ding, R.
    [J]. MATHEMATICAL NOTES, 2012, 91 (5-6) : 868 - 877