Asymptotic Behavior of Inflated Lattice Polygons

被引:0
|
作者
Mithun K. Mitra
Gautam I. Menon
R. Rajesh
机构
[1] The Institute of Mathematical Sciences,
来源
关键词
Lattice polygons; Vesicles; Exact enumeration; Wulff construction;
D O I
暂无
中图分类号
学科分类号
摘要
We study the inflated phase of two dimensional lattice polygons with fixed perimeter N and variable area, associating a weight exp [pA−Jb] to a polygon with area A and b bends. For convex and column-convex polygons, we calculate the average area for positive values of the pressure. For large pressures, the area has the asymptotic behaviour \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\langle A\rangle/A_{\max}=1-K(J)/\tilde {p}^{2}+\mathcal{O}(\rho^{-\tilde {p}})$\end{document} , where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tilde {p}=pN\gg 1$\end{document} , and ρ<1. The constant K(J) is found to be the same for both types of polygons. We argue that self-avoiding polygons should exhibit the same asymptotic behavior. For self-avoiding polygons, our predictions are in good agreement with exact enumeration data for J=0 and Monte Carlo simulations for J≠0. We also study polygons where self-intersections are allowed, verifying numerically that the asymptotic behavior described above continues to hold.
引用
收藏
页码:393 / 404
页数:11
相关论文
共 50 条