Asymptotic Behavior of Inflated Lattice Polygons

被引:0
|
作者
Mithun K. Mitra
Gautam I. Menon
R. Rajesh
机构
[1] The Institute of Mathematical Sciences,
来源
关键词
Lattice polygons; Vesicles; Exact enumeration; Wulff construction;
D O I
暂无
中图分类号
学科分类号
摘要
We study the inflated phase of two dimensional lattice polygons with fixed perimeter N and variable area, associating a weight exp [pA−Jb] to a polygon with area A and b bends. For convex and column-convex polygons, we calculate the average area for positive values of the pressure. For large pressures, the area has the asymptotic behaviour \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\langle A\rangle/A_{\max}=1-K(J)/\tilde {p}^{2}+\mathcal{O}(\rho^{-\tilde {p}})$\end{document} , where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tilde {p}=pN\gg 1$\end{document} , and ρ<1. The constant K(J) is found to be the same for both types of polygons. We argue that self-avoiding polygons should exhibit the same asymptotic behavior. For self-avoiding polygons, our predictions are in good agreement with exact enumeration data for J=0 and Monte Carlo simulations for J≠0. We also study polygons where self-intersections are allowed, verifying numerically that the asymptotic behavior described above continues to hold.
引用
收藏
页码:393 / 404
页数:11
相关论文
共 50 条
  • [41] Asymptotic behavior of a neural field lattice model with a Heaviside operator
    Han, Xiaoying
    Kloeden, Peter E.
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2019, 389 : 1 - 12
  • [42] Asymptotic Behavior of Solutions of a Strongly Nonlinear Model of a Crystal Lattice
    E. L. Aero
    S. A. Vakulenko
    [J]. Theoretical and Mathematical Physics, 2005, 143 : 782 - 791
  • [43] Asymptotic Behavior of a Nonautonomous p-Laplacian Lattice System
    Gu, Anhui
    Kloeden, Peter E.
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2016, 26 (10):
  • [44] Asymptotic behavior of acyclic and cyclic orientations of directed lattice graphs
    Chang, Shu-Chiuan
    Shrock, Robert
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2020, 540
  • [45] Size and area of square lattice polygons
    Jensen, I
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (18): : 3533 - 3543
  • [46] Minimal Polygons with Fixed Lattice Width
    Filip Cools
    Alexander Lemmens
    [J]. Annals of Combinatorics, 2019, 23 : 285 - 293
  • [47] Knotting statistics for polygons in lattice tubes
    Beaton, N. R.
    Eng, J. W.
    Soteros, C. E.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2019, 52 (14)
  • [48] Trajectories of square lattice staircase polygons
    van Rensburg, E. J. Janse
    [J]. PHYSICA SCRIPTA, 2023, 98 (12)
  • [49] Entanglement complexity of semiflexible lattice polygons
    Orlandini, E
    Tesi, MC
    Whittington, SG
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (47): : L795 - L800
  • [50] Notes on optimal convex lattice polygons
    Zunic, J
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1998, 30 : 377 - 385