A Uniqueness Result for Strong Singular Kirchhoff-Type Fractional Laplacian Problems

被引:0
|
作者
Li Wang
Kun Cheng
Binlin Zhang
机构
[1] East China Jiaotong University,College of Science
[2] Jingdezhen Ceramic Institute,Department of Information Engineering
[3] Shandong University of Science and Technology,College of Mathematics and System Science
来源
关键词
Fractional Laplacian; Kirchhoff-type problem; Strong singularity; Uniqueness of solution; 35B33; 35B38; 35J50; 35J60;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the following Kirchhoff-type fractional Laplacian problem with strong singularity: (a+b‖u‖2)(-Δ)su=f(x)u-γ-k(x)uqinΩ,u>0inΩ,u=0inR3\Ω,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{ll} (a+b\Vert u\Vert ^2) (-\Delta )^{s} u =f(x)u^{-\gamma }-k(x)u^q &{}\quad \text {in } \Omega , \\ u>0 &{}\quad \text {in } \Omega ,\\ u =0&{}\quad \text {in }\mathbb {R}^3\backslash \Omega , \end{array}\right. \end{aligned}$$\end{document}where (-Δ)s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(-\Delta )^{s}$$\end{document} is the fractional Laplace operator, a,b≥0,a+b>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a, b \ge 0, a+b>0$$\end{document}, Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} is a bounded smooth domain of R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^3$$\end{document}, k∈L∞(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \in L^{\infty }(\Omega )$$\end{document} is a non-negative function, q∈(0,1),γ>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q \in (0,1), \gamma > 1$$\end{document} and f∈L1(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f \in L^1 (\Omega )$$\end{document} is positive almost everywhere in Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document}. Using variational method and Nehari method, we obtain a uniqueness result. A novelty is that the Kirchhoff coefficient may vanish at zero.
引用
收藏
页码:1859 / 1875
页数:16
相关论文
共 50 条
  • [1] A Uniqueness Result for Strong Singular Kirchhoff-Type Fractional Laplacian Problems
    Wang, Li
    Cheng, Kun
    Zhang, Binlin
    APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 83 (03): : 1859 - 1875
  • [2] Kirchhoff-Type Fractional Laplacian Problems with Critical and Singular Nonlinearities
    Duan, Qingwei
    Guo, Lifeng
    Zhang, Binlin
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2023, 46 (02)
  • [3] Kirchhoff-Type Fractional Laplacian Problems with Critical and Singular Nonlinearities
    Qingwei Duan
    Lifeng Guo
    Binlin Zhang
    Bulletin of the Malaysian Mathematical Sciences Society, 2023, 46
  • [4] KIRCHHOFF-TYPE DIFFERENTIAL INCLUSION PROBLEMS INVOLVING THE FRACTIONAL LAPLACIAN AND STRONG DAMPING
    Xiang, Mingqi
    Zhang, Binlin
    Hu, Die
    ELECTRONIC RESEARCH ARCHIVE, 2020, 28 (02): : 651 - 669
  • [5] Existence and uniqueness result for a variable-order fractional p(x)-Laplacian problem of Kirchhoff-type
    Mohammed Massar
    São Paulo Journal of Mathematical Sciences, 2025, 19 (1)
  • [6] Degenerate Kirchhoff-type hyperbolic problems involving the fractional Laplacian
    Pan, Ning
    Pucci, Patrizia
    Zhang, Binlin
    JOURNAL OF EVOLUTION EQUATIONS, 2018, 18 (02) : 385 - 409
  • [7] Degenerate Kirchhoff-type hyperbolic problems involving the fractional Laplacian
    Ning Pan
    Patrizia Pucci
    Binlin Zhang
    Journal of Evolution Equations, 2018, 18 : 385 - 409
  • [8] Nonlocal Kirchhoff-type problems with singular nonlinearity: existence, uniqueness and bifurcation
    Linlin Wang
    Yuming Xing
    Binlin Zhang
    Fractional Calculus and Applied Analysis, 2023, 26 : 2928 - 2958
  • [9] Nonlocal Kirchhoff-type problems with singular nonlinearity: existence, uniqueness and bifurcation
    Wang, Linlin
    Xing, Yuming
    Zhang, Binlin
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2023, 26 (06) : 2928 - 2958
  • [10] Existence results for Kirchhoff-type superlinear problems involving the fractional Laplacian
    Zhang Binlin
    Radulescu, Vicentiu D.
    Wang, Li
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2019, 149 (04) : 1061 - 1081