Kirchhoff-Type Fractional Laplacian Problems with Critical and Singular Nonlinearities

被引:3
|
作者
Duan, Qingwei [1 ]
Guo, Lifeng [1 ]
Zhang, Binlin [2 ]
机构
[1] Northeast Petr Univ, Sch Math & Stat, Daqing 163318, Peoples R China
[2] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Peoples R China
基金
中国国家自然科学基金;
关键词
Kirchhoff equation; Strong singularity; Fractional Laplacian; Critical exponent; Fractional elliptic problem; MULTIPLE POSITIVE SOLUTIONS; ASYMPTOTIC-BEHAVIOR; UNIQUENESS RESULT; EXISTENCE; EQUATIONS; THEOREMS;
D O I
10.1007/s40840-023-01480-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper, we are interested in the critical Kirchhoff-type fractional Laplacian problem involving strong singularity as shown below:{(a +bllull(2m-2))(-triangle)(s) u = f(x)u(-gamma) - h(x)u(2*s -1), in Omega,u > 0, in Omega,u=0, in R-N\Omega,where Omega subset of R-N is a bounded smooth domain, (-triangle)(s) is the fractional Laplace operator, s is an element of (0, 1), N > 2s, a, b >= 0, a +b > 0, m >= 1,gamma > 1, h is an element of L-infinity(Omega) is a nonnegative function, 2(s)(*) = 2N/(N - 2s) is the critical Sobolev exponent, and f is an element of L-1(Omega) is positive almost everywhere in Omega. By the Nehari method and Ekeland's variational principle, we overcome the shortage of compactness due to the critical nonlinearity and establish the existence and uniqueness of weak solution for the above problem. The novelties of our paper are that the Kirchhoff term M may vanish at zero and the considered fractional elliptic problem involves strong singularity and the critical exponent.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] Kirchhoff-Type Fractional Laplacian Problems with Critical and Singular Nonlinearities
    Qingwei Duan
    Lifeng Guo
    Binlin Zhang
    Bulletin of the Malaysian Mathematical Sciences Society, 2023, 46
  • [2] A Uniqueness Result for Strong Singular Kirchhoff-Type Fractional Laplacian Problems
    Wang, Li
    Cheng, Kun
    Zhang, Binlin
    APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 83 (03): : 1859 - 1875
  • [3] A Uniqueness Result for Strong Singular Kirchhoff-Type Fractional Laplacian Problems
    Li Wang
    Kun Cheng
    Binlin Zhang
    Applied Mathematics & Optimization, 2021, 83 : 1859 - 1875
  • [4] Degenerate Kirchhoff-type hyperbolic problems involving the fractional Laplacian
    Pan, Ning
    Pucci, Patrizia
    Zhang, Binlin
    JOURNAL OF EVOLUTION EQUATIONS, 2018, 18 (02) : 385 - 409
  • [5] Degenerate Kirchhoff-type hyperbolic problems involving the fractional Laplacian
    Ning Pan
    Patrizia Pucci
    Binlin Zhang
    Journal of Evolution Equations, 2018, 18 : 385 - 409
  • [6] Fractional Kirchhoff-type equation with singular potential and critical exponent
    Liu, Senli
    Chen, Haibo
    JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (11)
  • [7] Fractional Kirchhoff Hardy problems with singular and critical Sobolev nonlinearities
    Alessio   Fiscella
    Pawan Kumar Mishra
    manuscripta mathematica, 2022, 168 : 257 - 301
  • [8] Fractional Kirchhoff Hardy problems with singular and critical Sobolev nonlinearities
    Fiscella, Alessio
    Mishra, Pawan Kumar
    MANUSCRIPTA MATHEMATICA, 2022, 168 (1-2) : 257 - 301
  • [9] On Kirchhoff type problems involving critical and singular nonlinearities
    Lei, Chun-Yu
    Chu, Chang-Mu
    Suo, Hong-Min
    Tang, Chun-Lei
    ANNALES POLONICI MATHEMATICI, 2015, 114 (03) : 269 - 291
  • [10] Kirchhoff-type critical fractional Laplacian system with convolution and magnetic field
    Liang, Sihua
    Zhang, Binlin
    MATHEMATISCHE NACHRICHTEN, 2024, 297 (07) : 2667 - 2685