Fractional Kirchhoff Hardy problems with singular and critical Sobolev nonlinearities

被引:0
|
作者
Alessio   Fiscella
Pawan Kumar Mishra
机构
[1] Universidade Estadual de Campinas,Departamento de Matemática
[2] IMECC,Departament of Mathematics
[3] Indian Institute of Technology Bhilai,undefined
来源
manuscripta mathematica | 2022年 / 168卷
关键词
35J75; 35R11; 49J35;
D O I
暂无
中图分类号
学科分类号
摘要
The paper deals with the following singular fractional problem M∬R2N|u(x)-u(y)|2|x-y|N+2sdxdy(-Δ)su-μu|x|2s=λf(x)u-γ+g(x)u2s∗-1inΩ,u>0inΩ,u=0inRN\Ω,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{lll} M\left( \displaystyle \iint _{{\mathbb {R}}^{2N}}\frac{|u(x)-u(y)|^2}{|x-y|^{N+2s}}dxdy\right) (-\Delta )^{s} u-\mu \displaystyle \frac{u}{|x|^{2s}}= \lambda f(x)u^{-\gamma }+ g(x){u^{2^*_s-1}}&{}\;\; \text {in}\; \Omega ,\\ u>0&{} \;\; \text {in}\; \Omega ,\\ u=0&{}\;\;\text {in}\;{\mathbb {R}}^N\setminus \Omega , \end{array}\right. \end{aligned}$$\end{document}where Ω⊂RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset {\mathbb {R}}^N$$\end{document} is an open bounded domain, with 0∈Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\in \Omega $$\end{document}, dimension N>2s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N>2s$$\end{document} with s∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s\in (0,1)$$\end{document}, 2s∗=2N/(N-2s)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^*_s=2N/(N-2s)$$\end{document} is the fractional critical Sobolev exponent, λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} and μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} are positive parameters, exponent γ∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma \in (0,1)$$\end{document}, M models a Kirchhoff coefficient, f is a positive weight while g is a sign-changing function. The main feature and novelty of our problem is the combination of the critical Hardy and Sobolev nonlinearities with the bi-nonlocal framework and a singular nondifferentiable term. By exploiting the Nehari manifold approach, we provide the existence of at least two positive solutions.
引用
收藏
页码:257 / 301
页数:44
相关论文
共 50 条
  • [1] Fractional Kirchhoff Hardy problems with singular and critical Sobolev nonlinearities
    Fiscella, Alessio
    Mishra, Pawan Kumar
    MANUSCRIPTA MATHEMATICA, 2022, 168 (1-2) : 257 - 301
  • [2] Two Positive Solutions for Kirchhoff Type Problems with Hardy-Sobolev Critical Exponent and Singular Nonlinearities
    Tang, Yu-Ting
    Liao, Jia-Feng
    Tang, Chun-Lei
    TAIWANESE JOURNAL OF MATHEMATICS, 2019, 23 (01): : 231 - 253
  • [3] On a Degenerate p-Fractional Kirchhoff Equations Involving Critical Sobolev–Hardy Nonlinearities
    Yueqiang Song
    Shaoyun Shi
    Mediterranean Journal of Mathematics, 2018, 15
  • [4] Kirchhoff-Type Fractional Laplacian Problems with Critical and Singular Nonlinearities
    Qingwei Duan
    Lifeng Guo
    Binlin Zhang
    Bulletin of the Malaysian Mathematical Sciences Society, 2023, 46
  • [5] Kirchhoff-Type Fractional Laplacian Problems with Critical and Singular Nonlinearities
    Duan, Qingwei
    Guo, Lifeng
    Zhang, Binlin
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2023, 46 (02)
  • [6] Infinitely many solutions for fractional Kirchhoff-Sobolev-Hardy critical problems
    Ambrosio, Vincenzo
    Fiscella, Alessio
    Isernia, Teresa
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2019, (25) : 1 - 13
  • [7] On a Degenerate p-Fractional Kirchhoff Equations Involving Critical Sobolev-Hardy Nonlinearities
    Song, Yueqiang
    Shi, Shaoyun
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2018, 15 (01)
  • [8] COMBINED EFFECTS OF SINGULAR AND HARDY NONLINEARITIES IN FRACTIONAL KIRCHHOFF CHOQUARD EQUATION
    Alkhal, Rana
    Kratou, Mouna
    Saoudi, Kamel
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2025, 15 (01): : 76 - 109
  • [9] Infinitely many solutions for magnetic fractional problems with critical Sobolev-Hardy nonlinearities
    Yang, Libo
    An, Tianqing
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (18) : 9607 - 9617
  • [10] ON CRITICAL FRACTIONAL SYSTEMS WITH HARDY-LITTLEWOOD-SOBOLEV NONLINEARITIES
    Hong, Qianyu
    Yang, Yang
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2020, 50 (05) : 1661 - 1683