Fractional Kirchhoff Hardy problems with singular and critical Sobolev nonlinearities

被引:0
|
作者
Alessio   Fiscella
Pawan Kumar Mishra
机构
[1] Universidade Estadual de Campinas,Departamento de Matemática
[2] IMECC,Departament of Mathematics
[3] Indian Institute of Technology Bhilai,undefined
来源
manuscripta mathematica | 2022年 / 168卷
关键词
35J75; 35R11; 49J35;
D O I
暂无
中图分类号
学科分类号
摘要
The paper deals with the following singular fractional problem M∬R2N|u(x)-u(y)|2|x-y|N+2sdxdy(-Δ)su-μu|x|2s=λf(x)u-γ+g(x)u2s∗-1inΩ,u>0inΩ,u=0inRN\Ω,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{lll} M\left( \displaystyle \iint _{{\mathbb {R}}^{2N}}\frac{|u(x)-u(y)|^2}{|x-y|^{N+2s}}dxdy\right) (-\Delta )^{s} u-\mu \displaystyle \frac{u}{|x|^{2s}}= \lambda f(x)u^{-\gamma }+ g(x){u^{2^*_s-1}}&{}\;\; \text {in}\; \Omega ,\\ u>0&{} \;\; \text {in}\; \Omega ,\\ u=0&{}\;\;\text {in}\;{\mathbb {R}}^N\setminus \Omega , \end{array}\right. \end{aligned}$$\end{document}where Ω⊂RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset {\mathbb {R}}^N$$\end{document} is an open bounded domain, with 0∈Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\in \Omega $$\end{document}, dimension N>2s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N>2s$$\end{document} with s∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s\in (0,1)$$\end{document}, 2s∗=2N/(N-2s)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^*_s=2N/(N-2s)$$\end{document} is the fractional critical Sobolev exponent, λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} and μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} are positive parameters, exponent γ∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma \in (0,1)$$\end{document}, M models a Kirchhoff coefficient, f is a positive weight while g is a sign-changing function. The main feature and novelty of our problem is the combination of the critical Hardy and Sobolev nonlinearities with the bi-nonlocal framework and a singular nondifferentiable term. By exploiting the Nehari manifold approach, we provide the existence of at least two positive solutions.
引用
收藏
页码:257 / 301
页数:44
相关论文
共 50 条