Multiple solutions to the Kirchhoff fractional equation involving Hardy–Littlewood–Sobolev critical exponent

被引:0
|
作者
Jichao Wang
Jian Zhang
Yujun Cui
机构
[1] China University of Petroleum,College of Science
[2] Shandong University of Science and Technology,Department of Mathematics
来源
关键词
Fractional equation; Kirchhoff type; Hardy–Littlewood–Sobolev critical exponent; Multiple solution;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study a fractional Kirchhoff type equation with Hardy–Littlewood–Sobolev critical exponent. By using variational methods, we obtain the existence of mountain-pass type solution and negative energy solutions. Also, we prove some further properties of solutions.
引用
收藏
相关论文
共 50 条
  • [1] Multiple solutions to the Kirchhoff fractional equation involving Hardy-Littlewood-Sobolev critical exponent
    Wang, Jichao
    Zhang, Jian
    Cui, Yujun
    BOUNDARY VALUE PROBLEMS, 2019, 2019 (1)
  • [2] Multiple solutions for nonhomogeneous Choquard equation involving Hardy–Littlewood–Sobolev critical exponent
    Zifei Shen
    Fashun Gao
    Minbo Yang
    Zeitschrift für angewandte Mathematik und Physik, 2017, 68
  • [3] Fractional Kirchhoff-type equation with Hardy-Littlewood-Sobolev critical exponent
    Su, Yu
    Chen, Haibo
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 78 (06) : 2063 - 2082
  • [4] Multiple solutions for nonhomogeneous Choquard equation involving Hardy-Littlewood-Sobolev critical exponent
    Shen, Zifei
    Gao, Fashun
    Yang, Minbo
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2017, 68 (03):
  • [5] Multiple bound state solutions for fractional Choquard equation with Hardy-Littlewood-Sobolev critical exponent
    Guo, Lun
    Li, Qi
    JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (12)
  • [6] Existence and uniqueness of solutions for Choquard equation involving Hardy–Littlewood–Sobolev critical exponent
    Lun Guo
    Tingxi Hu
    Shuangjie Peng
    Wei Shuai
    Calculus of Variations and Partial Differential Equations, 2019, 58
  • [7] Bound state solutions of fractional Choquard equation with Hardy–Littlewood–Sobolev critical exponent
    Xiaolong Yang
    Computational and Applied Mathematics, 2021, 40
  • [8] Multiple solutions for weighted Kirchhoff equations involving critical Hardy-Sobolev exponent
    Shen, Zupei
    Yu, Jianshe
    ADVANCES IN NONLINEAR ANALYSIS, 2021, 10 (01) : 673 - 683
  • [9] MULTIPLE SOLUTIONS FOR A FRACTIONAL ρ-KIRCHHOFF PROBLEM WITH SUBCRITICAL AND CRITICAL HARDY-SOBOLEV EXPONENT
    Mirzaee, Hadi
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2018, 48 (06) : 2023 - 2054
  • [10] Existence and uniqueness of solutions for Choquard equation involving Hardy-Littlewood-Sobolev critical exponent
    Guo, Lun
    Hu, Tingxi
    Peng, Shuangjie
    Shuai, Wei
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2019, 58 (04)