Nonlocal Kirchhoff-type problems with singular nonlinearity: existence, uniqueness and bifurcation

被引:0
|
作者
Linlin Wang
Yuming Xing
Binlin Zhang
机构
[1] Harbin Institute of Technology,School of Mathematics
[2] Shandong University of Science and Technology,College of Mathematics and Systems Science
[3] Zhejiang Normal University,School of Mathematics
关键词
Kirchhoff equation; Fractional Laplacian; Singular nonlinearity; Global bifurcation; Fixed point; 35R11; 35B32; 47G20; 45G05;
D O I
暂无
中图分类号
学科分类号
摘要
This paper focuses on the following Kirchhoff-type problems involving fractional p-Laplacian operators and singular nonlinearities M(x,[u]s,pp)(-Δ)psu=λf(x)u-qinΩ,u>0inΩ,u=0inRN\Ω,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} {\left\{ \begin{array}{ll} M(x,[u]_{s,p}^p)(-\varDelta )_{p}^{s}u=\lambda f(x)u^{-q}~~\textrm{in}~~\varOmega , \\ u>0~~\textrm{in}~\varOmega ,\\ u=0~~\textrm{in}~{\mathbb {R}^N\setminus \varOmega }, \end{array}\right. } \end{aligned}$$\end{document}where s∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s\in (0,1)$$\end{document}, p∈(1,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\in (1, \infty )$$\end{document}, q>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q>0$$\end{document}, ps∗=Np/(N-ps)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p^*_s=Np/(N-ps)$$\end{document} with N>ps\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N>ps$$\end{document}, M(x,t)=a(x)+b(x)t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M(x,t)=a(x)+b(x)t$$\end{document}, λ∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda \in \mathbb {R}$$\end{document}. Firstly, to overcome the difficulties posed by the singularity structure and Kirchhoff term, we determine the lower bound on the weak solutions of approximating equations by super-solution techniques. Then, using this result combined with the fixed-point result, the compactness of operator is constructed, which plays an important role for bifurcation results. Meanwhile, the existence, uniqueness and L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^\infty $$\end{document}-bound of weak solutions to the equations with singular nonlinearities are analyzed, and the strategy adopted to equation adding subcritical term. Finally, we obtain the existence of unbounded connected components bifurcating from infinite and trivial solutions by means of bifurcation theory.
引用
收藏
页码:2928 / 2958
页数:30
相关论文
共 50 条
  • [1] Nonlocal Kirchhoff-type problems with singular nonlinearity: existence, uniqueness and bifurcation
    Wang, Linlin
    Xing, Yuming
    Zhang, Binlin
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2023, 26 (06) : 2928 - 2958
  • [2] Existence and non-existence results for Kirchhoff-type problems with convolution nonlinearity
    Chen, Sitong
    Zhang, Binlin
    Tang, Xianhua
    ADVANCES IN NONLINEAR ANALYSIS, 2020, 9 (01) : 148 - 167
  • [3] A Uniqueness Result for Strong Singular Kirchhoff-Type Fractional Laplacian Problems
    Wang, Li
    Cheng, Kun
    Zhang, Binlin
    APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 83 (03): : 1859 - 1875
  • [4] A Uniqueness Result for Strong Singular Kirchhoff-Type Fractional Laplacian Problems
    Li Wang
    Kun Cheng
    Binlin Zhang
    Applied Mathematics & Optimization, 2021, 83 : 1859 - 1875
  • [5] Existence and bifurcation behavior of positive solutions for a class of Kirchhoff-type problems
    Chen, Bin
    Ou, Zeng Qi
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 77 (10) : 2859 - 2866
  • [6] Nonlocal Kirchhoff Problems with Singular Exponential Nonlinearity
    Xiang Mingqi
    Radulescu, Vicentiu D.
    Zhang, Binlin
    APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 84 (01): : 915 - 954
  • [7] Nonlocal Kirchhoff Problems with Singular Exponential Nonlinearity
    Xiang Mingqi
    Vicenţiu D. Rădulescu
    Binlin Zhang
    Applied Mathematics & Optimization, 2021, 84 : 915 - 954
  • [8] Existence and multiplicity results for critical anisotropic Kirchhoff-type problems with nonlocal nonlinearities
    dos Santos, Gelson C. G.
    Silva, Julio R. S.
    Arruda, Suellen Cristina Q.
    Tavares, Leandro S.
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2022, 67 (04) : 822 - 842
  • [9] PERTURBATION METHODS FOR NONLOCAL KIRCHHOFF-TYPE PROBLEMS
    D'Onofrio, Luigi
    Fiscella, Alessio
    Bisci, Giovanni Molica
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2017, 20 (04) : 829 - 853
  • [10] An Existence Result For p-Kirchhoff-Type Problems With Singular Nonlinearity
    Rasouli, Sayyed Hahsem
    Fani, Mina
    APPLIED MATHEMATICS E-NOTES, 2018, 18 : 62 - 68