Nonlocal Kirchhoff-type problems with singular nonlinearity: existence, uniqueness and bifurcation

被引:0
|
作者
Linlin Wang
Yuming Xing
Binlin Zhang
机构
[1] Harbin Institute of Technology,School of Mathematics
[2] Shandong University of Science and Technology,College of Mathematics and Systems Science
[3] Zhejiang Normal University,School of Mathematics
关键词
Kirchhoff equation; Fractional Laplacian; Singular nonlinearity; Global bifurcation; Fixed point; 35R11; 35B32; 47G20; 45G05;
D O I
暂无
中图分类号
学科分类号
摘要
This paper focuses on the following Kirchhoff-type problems involving fractional p-Laplacian operators and singular nonlinearities M(x,[u]s,pp)(-Δ)psu=λf(x)u-qinΩ,u>0inΩ,u=0inRN\Ω,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} {\left\{ \begin{array}{ll} M(x,[u]_{s,p}^p)(-\varDelta )_{p}^{s}u=\lambda f(x)u^{-q}~~\textrm{in}~~\varOmega , \\ u>0~~\textrm{in}~\varOmega ,\\ u=0~~\textrm{in}~{\mathbb {R}^N\setminus \varOmega }, \end{array}\right. } \end{aligned}$$\end{document}where s∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s\in (0,1)$$\end{document}, p∈(1,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\in (1, \infty )$$\end{document}, q>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q>0$$\end{document}, ps∗=Np/(N-ps)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p^*_s=Np/(N-ps)$$\end{document} with N>ps\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N>ps$$\end{document}, M(x,t)=a(x)+b(x)t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M(x,t)=a(x)+b(x)t$$\end{document}, λ∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda \in \mathbb {R}$$\end{document}. Firstly, to overcome the difficulties posed by the singularity structure and Kirchhoff term, we determine the lower bound on the weak solutions of approximating equations by super-solution techniques. Then, using this result combined with the fixed-point result, the compactness of operator is constructed, which plays an important role for bifurcation results. Meanwhile, the existence, uniqueness and L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^\infty $$\end{document}-bound of weak solutions to the equations with singular nonlinearities are analyzed, and the strategy adopted to equation adding subcritical term. Finally, we obtain the existence of unbounded connected components bifurcating from infinite and trivial solutions by means of bifurcation theory.
引用
收藏
页码:2928 / 2958
页数:30
相关论文
共 50 条
  • [21] Kirchhoff-Type Fractional Laplacian Problems with Critical and Singular Nonlinearities
    Duan, Qingwei
    Guo, Lifeng
    Zhang, Binlin
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2023, 46 (02)
  • [22] On a Semilinear Wave Equation with Kirchhoff-Type Nonlocal Damping Terms and Logarithmic Nonlinearity
    Yi Yang
    Zhong Bo Fang
    Mediterranean Journal of Mathematics, 2023, 20
  • [23] Kirchhoff-Type Fractional Laplacian Problems with Critical and Singular Nonlinearities
    Qingwei Duan
    Lifeng Guo
    Binlin Zhang
    Bulletin of the Malaysian Mathematical Sciences Society, 2023, 46
  • [24] On a Semilinear Wave Equation with Kirchhoff-Type Nonlocal Damping Terms and Logarithmic Nonlinearity
    Yang, Yi
    Fang, Zhong Bo
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (01)
  • [25] On Kirchhoff type problems with singular nonlinearity in closed manifolds
    Chen, Nanbo
    Liang, Honghong
    Liu, Xiaochun
    AIMS MATHEMATICS, 2024, 9 (08): : 21397 - 21413
  • [26] Existence of nontrivial solutions for Kirchhoff-type problems with jumping nonlinearities
    Rong, Ting
    Li, Fuyi
    Liang, Zhanping
    APPLIED MATHEMATICS LETTERS, 2019, 95 (137-142) : 137 - 142
  • [27] Existence of Ground States for Kirchhoff-Type Problems with General Potentials
    He, Fuli
    Qin, Dongdong
    Tang, Xianhua
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (08) : 7709 - 7725
  • [28] On a class of Kirchhoff type problems with singular exponential nonlinearity
    Sattaf, Mebarka
    Khaldi, Brahim
    TAMKANG JOURNAL OF MATHEMATICS, 2024, 55 (02): : 97 - 111
  • [29] Existence of Ground States for Kirchhoff-Type Problems with General Potentials
    Fuli He
    Dongdong Qin
    Xianhua Tang
    The Journal of Geometric Analysis, 2021, 31 : 7709 - 7725
  • [30] Variable exponent q(m)-Kirchhoff-type problems with nonlocal terms and logarithmic nonlinearity on compact Riemannian manifolds
    Hind Bouaam
    Mohamed El Ouaarabi
    Chakir Allalou
    Said Melliani
    Bulletin of the Malaysian Mathematical Sciences Society, 2023, 46