A Uniqueness Result for Strong Singular Kirchhoff-Type Fractional Laplacian Problems

被引:0
|
作者
Li Wang
Kun Cheng
Binlin Zhang
机构
[1] East China Jiaotong University,College of Science
[2] Jingdezhen Ceramic Institute,Department of Information Engineering
[3] Shandong University of Science and Technology,College of Mathematics and System Science
来源
关键词
Fractional Laplacian; Kirchhoff-type problem; Strong singularity; Uniqueness of solution; 35B33; 35B38; 35J50; 35J60;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the following Kirchhoff-type fractional Laplacian problem with strong singularity: (a+b‖u‖2)(-Δ)su=f(x)u-γ-k(x)uqinΩ,u>0inΩ,u=0inR3\Ω,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{ll} (a+b\Vert u\Vert ^2) (-\Delta )^{s} u =f(x)u^{-\gamma }-k(x)u^q &{}\quad \text {in } \Omega , \\ u>0 &{}\quad \text {in } \Omega ,\\ u =0&{}\quad \text {in }\mathbb {R}^3\backslash \Omega , \end{array}\right. \end{aligned}$$\end{document}where (-Δ)s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(-\Delta )^{s}$$\end{document} is the fractional Laplace operator, a,b≥0,a+b>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a, b \ge 0, a+b>0$$\end{document}, Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} is a bounded smooth domain of R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^3$$\end{document}, k∈L∞(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \in L^{\infty }(\Omega )$$\end{document} is a non-negative function, q∈(0,1),γ>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q \in (0,1), \gamma > 1$$\end{document} and f∈L1(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f \in L^1 (\Omega )$$\end{document} is positive almost everywhere in Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document}. Using variational method and Nehari method, we obtain a uniqueness result. A novelty is that the Kirchhoff coefficient may vanish at zero.
引用
收藏
页码:1859 / 1875
页数:16
相关论文
共 50 条
  • [31] Kirchhoff-type critical fractional Laplacian system with convolution and magnetic field
    Liang, Sihua
    Zhang, Binlin
    MATHEMATISCHE NACHRICHTEN, 2024, 297 (07) : 2667 - 2685
  • [32] Variational approaches to p-Laplacian discrete problems of Kirchhoff-type
    Heidarkhani, Shapour
    Afrouzi, Ghasem A.
    Henderson, Johnny
    Moradi, Shahin
    Caristi, Giuseppe
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2017, 23 (05) : 917 - 938
  • [33] MULTIPLE SOLUTIONS FOR A KIRCHHOFF-TYPE FRACTIONAL COUPLED PROBLEM WITH P-LAPLACIAN
    Wang, Yi
    Tian, Lixin
    Dong, Minjie
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2023, 13 (03): : 1535 - 1555
  • [34] Existence of Solutions for Kirchhoff-Type Fractional Dirichlet Problem with p-Laplacian
    Kang, Danyang
    Liu, Cuiling
    Zhang, Xingyong
    MATHEMATICS, 2020, 8 (01)
  • [35] Existence results for a Kirchhoff-type equation involving fractional p(x)-Laplacian
    Zhang, Jinguo
    Yang, Dengyun
    Wu, Yadong
    AIMS MATHEMATICS, 2021, 6 (08): : 8390 - 8403
  • [36] Infinitely many solutions for Kirchhoff-type variable-order fractional Laplacian problems involving variable exponents
    Wang, Li
    Zhang, Binlin
    APPLICABLE ANALYSIS, 2021, 100 (11) : 2418 - 2435
  • [37] On Critical Schrödinger–Kirchhoff-Type Problems Involving the Fractional p-Laplacian with Potential Vanishing at Infinity
    Nguyen Van Thin
    Mingqi Xiang
    Binlin Zhang
    Mediterranean Journal of Mathematics, 2021, 18
  • [39] On the Nonhomogeneous Kirchhoff-type Problems
    Narimane Aissaoui
    Mediterranean Journal of Mathematics, 2023, 20
  • [40] On a singular Kirchhoff type problems driven by p(.)-Laplacian operator
    Laghzal, Mohamed
    Touzani, Abdelfattah
    APPLICABLE ANALYSIS, 2022, 101 (16) : 5932 - 5947