A Uniqueness Result for Strong Singular Kirchhoff-Type Fractional Laplacian Problems

被引:0
|
作者
Li Wang
Kun Cheng
Binlin Zhang
机构
[1] East China Jiaotong University,College of Science
[2] Jingdezhen Ceramic Institute,Department of Information Engineering
[3] Shandong University of Science and Technology,College of Mathematics and System Science
来源
关键词
Fractional Laplacian; Kirchhoff-type problem; Strong singularity; Uniqueness of solution; 35B33; 35B38; 35J50; 35J60;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the following Kirchhoff-type fractional Laplacian problem with strong singularity: (a+b‖u‖2)(-Δ)su=f(x)u-γ-k(x)uqinΩ,u>0inΩ,u=0inR3\Ω,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{ll} (a+b\Vert u\Vert ^2) (-\Delta )^{s} u =f(x)u^{-\gamma }-k(x)u^q &{}\quad \text {in } \Omega , \\ u>0 &{}\quad \text {in } \Omega ,\\ u =0&{}\quad \text {in }\mathbb {R}^3\backslash \Omega , \end{array}\right. \end{aligned}$$\end{document}where (-Δ)s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(-\Delta )^{s}$$\end{document} is the fractional Laplace operator, a,b≥0,a+b>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a, b \ge 0, a+b>0$$\end{document}, Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} is a bounded smooth domain of R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^3$$\end{document}, k∈L∞(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \in L^{\infty }(\Omega )$$\end{document} is a non-negative function, q∈(0,1),γ>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q \in (0,1), \gamma > 1$$\end{document} and f∈L1(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f \in L^1 (\Omega )$$\end{document} is positive almost everywhere in Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document}. Using variational method and Nehari method, we obtain a uniqueness result. A novelty is that the Kirchhoff coefficient may vanish at zero.
引用
收藏
页码:1859 / 1875
页数:16
相关论文
共 50 条
  • [41] On a fractional degenerate Kirchhoff-type problem
    Bisci, Giovanni Molica
    Vilasi, Luca
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2017, 19 (01)
  • [42] Existence and multiplicity of solutions for critical Kirchhoff-type p-Laplacian problems
    Wang, Li
    Xie, Kun
    Zhang, Binlin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 458 (01) : 361 - 378
  • [43] Ground state solutions of Kirchhoff-type fractional Dirichlet problem with p-Laplacian
    Taiyong Chen
    Wenbin Liu
    Advances in Difference Equations, 2018
  • [44] THREE SOLUTIONS FOR A KIRCHHOFF-TYPE PROBLEM INVOLVING NONLOCAL FRACTIONAL p-LAPLACIAN
    Azroul, E.
    Benkirane, A.
    Srati, M.
    ADVANCES IN OPERATOR THEORY, 2019, 4 (04): : 821 - 822
  • [45] Ground state solutions of Kirchhoff-type fractional Dirichlet problem with p-Laplacian
    Chen, Taiyong
    Liu, Wenbin
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [46] Existence and multiplicity of solutions for fractional p(x)-Kirchhoff-type problems
    Hao, Zhiwei
    Zheng, Huiqin
    ELECTRONIC RESEARCH ARCHIVE, 2023, 31 (06): : 3309 - 3321
  • [47] CRITICAL KIRCHHOFF-TYPE EQUATION WITH SINGULAR POTENTIAL
    Su, Yu
    Liu, Senli
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2023, 61 (02) : 611 - 636
  • [48] Multiplicity of solutions for a singular Kirchhoff-type problem
    Khamessi, Bilel
    Ghanmi, Abdeljabbar
    FILOMAT, 2023, 37 (27) : 9103 - 9117
  • [49] Sign-changing solutions for Kirchhoff-type problems involving variable-order fractional Laplacian and critical exponents
    Liang, Sihua
    Bisci, Giovanni Molica
    Zhang, Binlin
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2022, 27 (03): : 556 - 575
  • [50] A fractional profile decomposition and its application to Kirchhoff-type fractional problems with prescribed mass
    Tian, Junshan
    Zhang, Binlin
    ADVANCES IN NONLINEAR ANALYSIS, 2024, 13 (01)