A Uniqueness Result for Strong Singular Kirchhoff-Type Fractional Laplacian Problems

被引:0
|
作者
Li Wang
Kun Cheng
Binlin Zhang
机构
[1] East China Jiaotong University,College of Science
[2] Jingdezhen Ceramic Institute,Department of Information Engineering
[3] Shandong University of Science and Technology,College of Mathematics and System Science
来源
关键词
Fractional Laplacian; Kirchhoff-type problem; Strong singularity; Uniqueness of solution; 35B33; 35B38; 35J50; 35J60;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the following Kirchhoff-type fractional Laplacian problem with strong singularity: (a+b‖u‖2)(-Δ)su=f(x)u-γ-k(x)uqinΩ,u>0inΩ,u=0inR3\Ω,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{ll} (a+b\Vert u\Vert ^2) (-\Delta )^{s} u =f(x)u^{-\gamma }-k(x)u^q &{}\quad \text {in } \Omega , \\ u>0 &{}\quad \text {in } \Omega ,\\ u =0&{}\quad \text {in }\mathbb {R}^3\backslash \Omega , \end{array}\right. \end{aligned}$$\end{document}where (-Δ)s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(-\Delta )^{s}$$\end{document} is the fractional Laplace operator, a,b≥0,a+b>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a, b \ge 0, a+b>0$$\end{document}, Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} is a bounded smooth domain of R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^3$$\end{document}, k∈L∞(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \in L^{\infty }(\Omega )$$\end{document} is a non-negative function, q∈(0,1),γ>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q \in (0,1), \gamma > 1$$\end{document} and f∈L1(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f \in L^1 (\Omega )$$\end{document} is positive almost everywhere in Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document}. Using variational method and Nehari method, we obtain a uniqueness result. A novelty is that the Kirchhoff coefficient may vanish at zero.
引用
收藏
页码:1859 / 1875
页数:16
相关论文
共 50 条
  • [21] Elliptic anisotropic Kirchhoff-type problems with singular term
    Massar, Mohammed
    JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2023, 9 (01) : 419 - 440
  • [22] Degenerate Kirchhoff-type wave problems involving the fractional Laplacian with nonlinear damping and source terms
    Ning Pan
    Patrizia Pucci
    Runzhang Xu
    Binlin Zhang
    Journal of Evolution Equations, 2019, 19 : 615 - 643
  • [23] Fractional Kirchhoff-type equation with singular potential and critical exponent
    Liu, Senli
    Chen, Haibo
    JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (11)
  • [24] Sign-changing solutions for Kirchhoff-type variable-order fractional Laplacian problems
    Jianwen Zhou
    Yueting Yang
    Wenbo Wang
    Boundary Value Problems, 2024
  • [25] Degenerate Kirchhoff-type wave problems involving the fractional Laplacian with nonlinear damping and source terms
    Pan, Ning
    Pucci, Patrizia
    Xu, Runzhang
    Zhang, Binlin
    JOURNAL OF EVOLUTION EQUATIONS, 2019, 19 (03) : 615 - 643
  • [26] Sign-changing solutions for Kirchhoff-type variable-order fractional Laplacian problems
    Zhou, Jianwen
    Yang, Yueting
    Wang, Wenbo
    BOUNDARY VALUE PROBLEMS, 2024, 2024 (01)
  • [27] BLOWUP OF SOLUTIONS TO DEGENERATE KIRCHHOFF-TYPE DIFFUSION PROBLEMS INVOLVING THE FRACTIONAL p-LAPLACIAN
    Yang, Yanbing
    Tian, Xueteng
    Zhang, Meina
    Shen, Jihong
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2018,
  • [28] Perturbed Kirchhoff-type p-Laplacian discrete problems
    Shapour Heidarkhani
    Giuseppe Caristi
    Amjad Salari
    Collectanea Mathematica, 2017, 68 : 401 - 418
  • [29] Perturbed Kirchhoff-type p-Laplacian discrete problems
    Heidarkhani, Shapour
    Caristi, Giuseppe
    Salari, Amjad
    COLLECTANEA MATHEMATICA, 2017, 68 (03) : 401 - 418
  • [30] Least energy nodal solutions for Kirchhoff-type Laplacian problems
    Cheng, Bitao
    Chen, Jianhua
    Zhang, Binlin
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (06) : 3827 - 3849