Existence and multiplicity of solutions for fractional p(x)-Kirchhoff-type problems

被引:1
|
作者
Hao, Zhiwei [1 ]
Zheng, Huiqin [1 ]
机构
[1] Hunan Univ Sci & Technol, Sch Math & Comp Sci, Xiangtan 411201, Peoples R China
来源
ELECTRONIC RESEARCH ARCHIVE | 2023年 / 31卷 / 06期
关键词
the symmetryic mountain pass theorem; Kirchhoff-type problem; fractional p(x)-Laplacian; fractional Sobolev space with variable exponents; KIRCHHOFF-TYPE; NONTRIVIAL SOLUTIONS; EQUATION; SPACES;
D O I
10.3934/era.2023167
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we deal with the existence and multiplicity of solutions for fractional p(x)-Kirchhoff-type problems as follows:{ M(Q1p(x,y) vertical bar v(x)-v(y)vertical bar p(x,y)|x-y|d+sp(x,y) dxdy)(-p(x))sv(x) =|v(x)|r(x)-v(x),inO,v=0,inRd\O, where (-p(x))s is the fractional p(x)-Laplacian. Different from the previous ones which have recently appeared, we weaken the condition of M and obtain the existence and multiplicity of solutions via the symmetric mountain pass theorem and the theory of the fractional Sobolev space with variable exponents.
引用
收藏
页码:3309 / 3321
页数:13
相关论文
共 50 条
  • [1] Existence and multiplicity of solutions for fractional p(x, .)-Kirchhoff-type problems in RN
    Azroul, E.
    Benkirane, A.
    Shimi, M.
    [J]. APPLICABLE ANALYSIS, 2021, 100 (09) : 2029 - 2048
  • [2] Existence and Multiplicity of Solutions for Fractional κ(ξ)-Kirchhoff-Type Equation
    Sousa, J. Vanterler da C.
    Kucche, Kishor D.
    Nieto, Juan J.
    [J]. QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2024, 23 (01)
  • [3] Existence and Multiplicity of Solutions for p(x)-Kirchhoff-Type Problem in RN
    Wei, Mei-Chun
    Tang, Chun-Lei
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2013, 36 (03) : 767 - 781
  • [4] Existence and multiplicity of solutions for p(.)-Kirchhoff-type equations
    AyazoClu, Rabil
    Akbulut, Sezgin
    Akkoyunlu, Ebubekir
    [J]. TURKISH JOURNAL OF MATHEMATICS, 2022, 46 (04) : 1342 - 1359
  • [5] Existence and multiplicity of solutions for a class of fractional Kirchhoff-type problem
    Sun, Gaofeng
    Teng, Kaimin
    [J]. MATHEMATICAL COMMUNICATIONS, 2014, 19 (01) : 183 - 194
  • [6] Existence and multiplicity of solutions for critical Kirchhoff-type p-Laplacian problems
    Wang, Li
    Xie, Kun
    Zhang, Binlin
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 458 (01) : 361 - 378
  • [7] Multiplicity of solutions for fractional p(z)-Kirchhoff-type equation
    Bouali, Tahar
    Guefaifia, Rafik
    Boulaaras, Salah
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2024, 2024 (01):
  • [8] Existence and multiplicity of solutions for (p,q)-Laplacian Kirchhoff-type fractional differential equations with impulses
    Wang, Yi
    Tian, Lixin
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (13) : 14177 - 14199
  • [9] Existence of solutions for a p(x)-Kirchhoff-type equation
    Dai, Guowei
    Hao, Ruifang
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 359 (01) : 275 - 284
  • [10] Multiplicity of solutions for a class of fractional p(x, .)-Kirchhoff-type problems without the Ambrosetti-Rabinowitz condition
    Hamdani, M. K.
    Zuo, Jiabin
    Chung, N. T.
    Repovs, D. D.
    [J]. BOUNDARY VALUE PROBLEMS, 2020, 2020 (01):