Limits of random trees

被引:0
|
作者
Attila Deák
机构
[1] MTA-ELTE,“Numerical Analysis and Large Networks” Research Group
来源
Acta Mathematica Hungarica | 2013年 / 141卷
关键词
sparse graph limit; random tree; 05C80;
D O I
暂无
中图分类号
学科分类号
摘要
Local convergence of bounded degree graphs was introduced by Benjamini and Schramm [2]. This result was extended further by Lyons [4] to bounded average degree graphs. In this paper, we study the convergence of a random tree sequence (Tn), where the probability of a given tree T is proportional to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\prod_{v_{i}\in V(T)}d(v_{i})!$\end{document}. We show that this sequence is convergent and describe the limit object, which is a random infinite rooted tree.
引用
收藏
页码:185 / 201
页数:16
相关论文
共 50 条
  • [1] Limits of random trees
    Deak, A.
    [J]. ACTA MATHEMATICA HUNGARICA, 2013, 141 (1-2) : 185 - 201
  • [2] Tree limits and limits of random trees
    Janson, Svante
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 2021, 30 (06): : 849 - 893
  • [3] Limits of Random Trees. II
    A. Deák
    [J]. Acta Mathematica Hungarica, 2015, 145 : 205 - 219
  • [4] Scaling limits of random Polya trees
    Panagiotou, Konstantinos
    Stufler, Benedikt
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2018, 170 (3-4) : 801 - 820
  • [5] Limits of Random Trees. II
    Deak, A.
    [J]. ACTA MATHEMATICA HUNGARICA, 2015, 145 (01) : 205 - 219
  • [6] Backbone scaling limits for random walks on random critical trees
    Ben Arous, Gerard
    Cabezas, Manuel
    Fribergh, Alexander
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2024, 60 (03): : 1814 - 1848
  • [7] Graph limits of random unlabelledk-trees
    Jin, Emma Yu
    Stufler, Benedikt
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 2020, 29 (05): : 722 - 746
  • [8] Scaling limits of random Pólya trees
    Konstantinos Panagiotou
    Benedikt Stufler
    [J]. Probability Theory and Related Fields, 2018, 170 : 801 - 820
  • [9] SCALING LIMITS FOR SIMPLE RANDOM WALKS ON RANDOM ORDERED GRAPH TREES
    Croydon, D. A.
    [J]. ADVANCES IN APPLIED PROBABILITY, 2010, 42 (02) : 528 - 558
  • [10] Scaling limits for some random trees constructed inhomogeneously
    Ross, Nathan
    Wen, Yuting
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2018, 23