Limits of random trees

被引:0
|
作者
Attila Deák
机构
[1] MTA-ELTE,“Numerical Analysis and Large Networks” Research Group
来源
Acta Mathematica Hungarica | 2013年 / 141卷
关键词
sparse graph limit; random tree; 05C80;
D O I
暂无
中图分类号
学科分类号
摘要
Local convergence of bounded degree graphs was introduced by Benjamini and Schramm [2]. This result was extended further by Lyons [4] to bounded average degree graphs. In this paper, we study the convergence of a random tree sequence (Tn), where the probability of a given tree T is proportional to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\prod_{v_{i}\in V(T)}d(v_{i})!$\end{document}. We show that this sequence is convergent and describe the limit object, which is a random infinite rooted tree.
引用
收藏
页码:185 / 201
页数:16
相关论文
共 50 条
  • [11] SCHRODER'S PROBLEMS AND SCALING LIMITS OF RANDOM TREES
    Pitman, Jim
    Rizzolo, Douglas
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 367 (10) : 6943 - 6969
  • [12] Scaling limits for minimal and random spanning trees in two dimensions
    Aizenman, M
    Burchard, A
    Newman, CM
    Wilson, DB
    [J]. RANDOM STRUCTURES & ALGORITHMS, 1999, 15 (3-4) : 319 - 367
  • [13] SCALING LIMITS OF MARKOV BRANCHING TREES WITH APPLICATIONS TO GALTON-WATSON AND RANDOM UNORDERED TREES
    Haas, Benedicte
    Miermont, Gregory
    [J]. ANNALS OF PROBABILITY, 2012, 40 (06): : 2589 - 2666
  • [14] LIMITS OF MULTIPLICATIVE INHOMOGENEOUS RANDOM GRAPHS AND LEVY TREES: THE CONTINUUM GRAPHS
    Broutin, Nicolas
    Duquesne, Thomas
    Wang, Minmin
    [J]. ANNALS OF APPLIED PROBABILITY, 2022, 32 (04): : 2448 - 2503
  • [15] Limits of multiplicative inhomogeneous random graphs and Levy trees: limit theorems
    Broutin, Nicolas
    Duquesne, Thomas
    Wang, Minmin
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2021, 181 (04) : 865 - 973
  • [17] Graph limits of random graphs from a subset of connected k-trees
    Drmota, Michael
    Jin, Emma Yu
    Stufler, Benedikt
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2019, 55 (01) : 125 - 152
  • [18] Local limits of large Galton-Watson trees rerooted at a random vertex
    Stufler, Benedikt
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2019, 55 (01): : 155 - 183
  • [19] Scaling limits of loop-erased random walks and uniform spanning trees
    Oded Schramm
    [J]. Israel Journal of Mathematics, 2000, 118 : 221 - 288
  • [20] Scaling limits of loop-erased random walks and uniform spanning trees
    Schramm, O
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2000, 118 (1) : 221 - 288