For any set of non-negative integers such that {0,1}, we consider a random -k-tree G(n,k) that is uniformly selected from all connected k-trees of (n + k) vertices such that the number of (k + 1)-cliques that contain any fixed k-clique belongs to . We prove that G(n,k), scaled by (kHk sigma)/(2n) where H-k is the kth harmonic number and sigma > 0, converges to the continuum random tree Te. Furthermore, we prove local convergence of the random -k-tree Gn,k circle to an infinite but locally finite random -k-tree G(infinity,k).
机构:
Univ British Columbia Okanagan, Dept Comp Sci, Irving K Barber Sch Arts & Sci, Kelowna, BC V1V 1V7, CanadaUniv British Columbia Okanagan, Dept Comp Sci, Irving K Barber Sch Arts & Sci, Kelowna, BC V1V 1V7, Canada
机构:
Res Org Informat & Syst, Natl Inst Informat, Chiyoda Ku, Tokyo 1018430, Japan
JST, ERATO, Kawarabayashi Large Graph Project, Tokyo, JapanIbaraki Univ, Hitachi, Ibaraki, Japan
Ozeki, Kenta
Tsugaki, Masao
论文数: 0引用数: 0
h-index: 0
机构:
Tokyo Univ Sci, Shinjuku Ku, Tokyo 162, JapanIbaraki Univ, Hitachi, Ibaraki, Japan
Tsugaki, Masao
Yan, Guiying
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Acad Math & Syst Sci, Beijing, Peoples R ChinaIbaraki Univ, Hitachi, Ibaraki, Japan