Graph limits of random graphs from a subset of connected k-trees

被引:2
|
作者
Drmota, Michael [1 ]
Jin, Emma Yu [1 ]
Stufler, Benedikt [2 ]
机构
[1] Tech Univ Wien, Inst Diskrete Math & Geometrie, Wiedner Hauptstr 8-10, A-1040 Vienna, Austria
[2] Ecole Normale Suprieure Lyon, Unite Math Pures & Appl, Lyon 07, France
基金
奥地利科学基金会;
关键词
continuum random tree; modified Galton-Watson tree; partial k-trees; SCALING LIMITS; BEHAVIOR; MAPS;
D O I
10.1002/rsa.20802
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
For any set of non-negative integers such that {0,1}, we consider a random -k-tree G(n,k) that is uniformly selected from all connected k-trees of (n + k) vertices such that the number of (k + 1)-cliques that contain any fixed k-clique belongs to . We prove that G(n,k), scaled by (kHk sigma)/(2n) where H-k is the kth harmonic number and sigma > 0, converges to the continuum random tree Te. Furthermore, we prove local convergence of the random -k-tree Gn,k circle to an infinite but locally finite random -k-tree G(infinity,k).
引用
下载
收藏
页码:125 / 152
页数:28
相关论文
共 50 条
  • [1] Spanning k-Trees of n-Connected Graphs
    Kano, Mikio
    Kishimoto, Hiroo
    GRAPHS AND COMBINATORICS, 2011, 27 (03) : 413 - 418
  • [2] Spanning k-Trees of n-Connected Graphs
    Mikio Kano
    Hiroo Kishimoto
    Graphs and Combinatorics, 2011, 27 : 413 - 418
  • [3] A forbidden pair for connected graphs to have spanning k-trees
    Maezawa, Shun-ichi
    Ozeki, Kenta
    JOURNAL OF GRAPH THEORY, 2022, 99 (03) : 509 - 519
  • [4] Independence Number and k-Trees of Graphs
    Yan, Zheng
    GRAPHS AND COMBINATORICS, 2017, 33 (05) : 1089 - 1093
  • [5] Generation of K-trees of undirected graphs
    Patvardhan, C
    Prasad, VC
    Pyara, VP
    IEEE TRANSACTIONS ON RELIABILITY, 1997, 46 (02) : 208 - 211
  • [6] Spanning k-trees of Bipartite Graphs
    Kano, Mikio
    Ozeki, Kenta
    Suzuki, Kazuhiro
    Tsugaki, Masao
    Yamashit, Tomoki
    ELECTRONIC JOURNAL OF COMBINATORICS, 2015, 22 (01):
  • [7] Independence Number and k-Trees of Graphs
    Zheng Yan
    Graphs and Combinatorics, 2017, 33 : 1089 - 1093
  • [8] The degree distribution of random k-trees
    Gao, Yong
    THEORETICAL COMPUTER SCIENCE, 2009, 410 (8-10) : 688 - 695
  • [9] m-dominating k-trees of graphs
    Kano, Mikio
    Ozeki, Kenta
    Tsugaki, Masao
    Yan, Guiying
    DISCRETE MATHEMATICS, 2016, 339 (02) : 729 - 736
  • [10] A characterization of k-trees that are interval p-graphs
    Lundgren, J. Richard
    Flesch, Breeann
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2011, 49 : 227 - 237