Graph limits of random graphs from a subset of connected k-trees

被引:2
|
作者
Drmota, Michael [1 ]
Jin, Emma Yu [1 ]
Stufler, Benedikt [2 ]
机构
[1] Tech Univ Wien, Inst Diskrete Math & Geometrie, Wiedner Hauptstr 8-10, A-1040 Vienna, Austria
[2] Ecole Normale Suprieure Lyon, Unite Math Pures & Appl, Lyon 07, France
基金
奥地利科学基金会;
关键词
continuum random tree; modified Galton-Watson tree; partial k-trees; SCALING LIMITS; BEHAVIOR; MAPS;
D O I
10.1002/rsa.20802
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
For any set of non-negative integers such that {0,1}, we consider a random -k-tree G(n,k) that is uniformly selected from all connected k-trees of (n + k) vertices such that the number of (k + 1)-cliques that contain any fixed k-clique belongs to . We prove that G(n,k), scaled by (kHk sigma)/(2n) where H-k is the kth harmonic number and sigma > 0, converges to the continuum random tree Te. Furthermore, we prove local convergence of the random -k-tree Gn,k circle to an infinite but locally finite random -k-tree G(infinity,k).
引用
下载
收藏
页码:125 / 152
页数:28
相关论文
共 50 条
  • [11] Shape Measures of Random Increasing k-trees
    Darrasse, Alexis
    Hwang, Hsien-Kuei
    Soria, Michele
    COMBINATORICS PROBABILITY & COMPUTING, 2016, 25 (05): : 668 - 699
  • [12] Scale Free Properties of Random k-Trees
    Cooper C.
    Uehara R.
    Mathematics in Computer Science, 2010, 3 (4) : 489 - 496
  • [13] On (k+1) -line graphs of k-trees and their nullities
    Oliveira, Allana S. S.
    de Freitas, Maria Aguieiras A.
    Vinagre, Cybele T. M.
    Markenzon, Lilian
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 614 : 244 - 255
  • [14] ON A CONNECTION BETWEEN THE EXISTENCE OF K-TREES AND THE TOUGHNESS OF A GRAPH
    WIN, S
    GRAPHS AND COMBINATORICS, 1989, 5 (02) : 201 - 205
  • [15] On the Structure of Contractible Edges in k-connected Partial k-trees
    N. S. Narayanaswamy
    N. Sadagopan
    L. Sunil Chandran
    Graphs and Combinatorics, 2009, 25 : 557 - 569
  • [16] Which k-trees are cover-incomparability graphs?
    Maxova, Jana
    Dubcova, Miroslava
    Pavlikova, Pavia
    Turzik, Daniel
    DISCRETE APPLIED MATHEMATICS, 2014, 167 : 222 - 227
  • [17] Spanning k-trees and distance spectral radius in graphs
    Zhou, Sizhong
    Wu, Jiancheng
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (16): : 23357 - 23366
  • [18] The Height of Random k-Trees and Related Branching Processes
    Cooper, Colin
    Frieze, Alan
    Uehara, Ryuhei
    RANDOM STRUCTURES & ALGORITHMS, 2014, 45 (04) : 675 - 702
  • [19] The spanning k-trees, perfect matchings and spectral radius of graphs
    Fan, Dandan
    Goryainov, Sergey
    Huang, Xueyi
    Lin, Huiqiu
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (21): : 7264 - 7275
  • [20] On the Structure of Contractible Edges in k-connected Partial k-trees
    Narayanaswamy, N. S.
    Sadagopan, N.
    Chandran, L. Sunil
    GRAPHS AND COMBINATORICS, 2009, 25 (04) : 557 - 569