Graph limits of random graphs from a subset of connected k-trees

被引:2
|
作者
Drmota, Michael [1 ]
Jin, Emma Yu [1 ]
Stufler, Benedikt [2 ]
机构
[1] Tech Univ Wien, Inst Diskrete Math & Geometrie, Wiedner Hauptstr 8-10, A-1040 Vienna, Austria
[2] Ecole Normale Suprieure Lyon, Unite Math Pures & Appl, Lyon 07, France
基金
奥地利科学基金会;
关键词
continuum random tree; modified Galton-Watson tree; partial k-trees; SCALING LIMITS; BEHAVIOR; MAPS;
D O I
10.1002/rsa.20802
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
For any set of non-negative integers such that {0,1}, we consider a random -k-tree G(n,k) that is uniformly selected from all connected k-trees of (n + k) vertices such that the number of (k + 1)-cliques that contain any fixed k-clique belongs to . We prove that G(n,k), scaled by (kHk sigma)/(2n) where H-k is the kth harmonic number and sigma > 0, converges to the continuum random tree Te. Furthermore, we prove local convergence of the random -k-tree Gn,k circle to an infinite but locally finite random -k-tree G(infinity,k).
引用
下载
收藏
页码:125 / 152
页数:28
相关论文
共 50 条