Sufficient conditions for k-factor-critical graphs and spanning k-trees of graphs

被引:0
|
作者
Guoyan Ao [1 ]
Ruifang Liu [2 ]
Jinjiang Yuan [1 ]
机构
[1] Zhengzhou University,School of Mathematics and Statistics
[2] Hulunbuir University,School of Mathematics and Physics
关键词
-factor-critical; spanning ; -tree; -clique; -connected graphs; spectral radius; 05C50; 05C35;
D O I
10.1007/s10801-025-01396-5
中图分类号
学科分类号
摘要
For any integer k≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 1$$\end{document}, a graph G is said to be k-factor-critical if G-S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G-S$$\end{document} has a perfect matching for each S⊆V(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S\subseteq V(G)$$\end{document} with |S|=k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|S|=k$$\end{document}. In this paper, we present a sufficient condition in terms of the number of r-cliques to guarantee a graph with minimum degree at least δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document} to be k-factor-critical, which improves the result of Fan and Lin (Spectral conditions for k-extendability and k-factors of bipartite graphs, arXiv: 2211.09304). For any integer k≥2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 2,$$\end{document} a spanning k-tree of a connected graph G is a spanning tree in which every vertex has degree at most k. Neumann–Lara and Rivera–Campo (Combinatorica 11:55–61, 1991) proved that, for an m-connected graph G with m≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m\ge 2$$\end{document}, if its independence number α(G)≤(k-1)m+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha (G)\le (k-1)m+1$$\end{document}, then G contains a spanning k-tree. Motivated by the above result, we provide tight spectral conditions for an m-connected graph to contain a spanning k-tree.
引用
收藏
相关论文
共 50 条
  • [1] Spanning k-trees of Bipartite Graphs
    Kano, Mikio
    Ozeki, Kenta
    Suzuki, Kazuhiro
    Tsugaki, Masao
    Yamashit, Tomoki
    ELECTRONIC JOURNAL OF COMBINATORICS, 2015, 22 (01):
  • [2] Spanning k-Trees of n-Connected Graphs
    Kano, Mikio
    Kishimoto, Hiroo
    GRAPHS AND COMBINATORICS, 2011, 27 (03) : 413 - 418
  • [3] Spanning k-Trees of n-Connected Graphs
    Mikio Kano
    Hiroo Kishimoto
    Graphs and Combinatorics, 2011, 27 : 413 - 418
  • [4] Spanning k-trees and distance spectral radius in graphs
    Zhou, Sizhong
    Wu, Jiancheng
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (16): : 23357 - 23366
  • [5] The spanning k-trees, perfect matchings and spectral radius of graphs
    Fan, Dandan
    Goryainov, Sergey
    Huang, Xueyi
    Lin, Huiqiu
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (21): : 7264 - 7275
  • [6] Minimally k-Factor-Critical Graphs for Some Large k
    Jing Guo
    Heping Zhang
    Graphs and Combinatorics, 2023, 39
  • [7] Minimally k-Factor-Critical Graphs for Some Large k
    Guo, Jing
    Zhang, Heping
    GRAPHS AND COMBINATORICS, 2023, 39 (03)
  • [8] A forbidden pair for connected graphs to have spanning k-trees
    Maezawa, Shun-ichi
    Ozeki, Kenta
    JOURNAL OF GRAPH THEORY, 2022, 99 (03) : 509 - 519
  • [9] A conjecture on k-factor-critical and 3-γ-critical graphs
    WANG Tao1&YU QingLin2 1Institute of Applied Mathematics
    2Department of Mathematics and Statistics
    Science China Mathematics, 2010, 53 (05) : 348 - 354
  • [10] A conjecture on k-factor-critical and 3-γ-critical graphs
    Tao Wang
    QingLin Yu
    Science China Mathematics, 2010, 53 : 1385 - 1391