A conjecture on k-factor-critical and 3-γ-critical graphs

被引:0
|
作者
WANG Tao1&YU QingLin2 1Institute of Applied Mathematics
2Department of Mathematics and Statistics
机构
基金
加拿大自然科学与工程研究理事会;
关键词
domination critical graph; factor critical; bicritical;
D O I
暂无
中图分类号
O157.5 [图论];
学科分类号
摘要
For a graph G =(V,E),a subset VS is a dominating set if every vertex in V is either in S or is adjacent to a vertex in S.The domination number γ(G) of G is the minimum order of a dominating set in G.A graph G is said to be domination vertex critical,if γ(G-v) < γ(G) for any vertex v in G.A graph G is domination edge critical,if γ(G ∪ e) < γ(G) for any edge e ∈/E(G).We call a graph G k-γ-vertex-critical(resp.k-γ-edge-critical) if it is domination vertex critical(resp.domination edge critical) and γ(G) = k.Ananchuen and Plummer posed the conjecture:Let G be a k-connected graph with the minimum degree at least k+1,where k 2 and k≡|V|(mod 2).If G is 3-γ-edge-critical and claw-free,then G is k-factor-critical.In this paper we present a proof to this conjecture,and we also discuss the properties such as connectivity and bicriticality in 3-γ-vertex-critical claw-free graph.
引用
收藏
页码:348 / 354
页数:7
相关论文
共 50 条
  • [1] A conjecture on k-factor-critical and 3-γ-critical graphs
    Tao Wang
    QingLin Yu
    Science China Mathematics, 2010, 53 : 1385 - 1391
  • [2] A conjecture on k-factor-critical and 3-γ-critical graphs
    Wang Tao
    Yu QingLin
    SCIENCE CHINA-MATHEMATICS, 2010, 53 (05) : 1385 - 1391
  • [3] Spectral radius and k-factor-critical graphs
    Zhou, Sizhong
    Sun, Zhiren
    Zhang, Yuli
    JOURNAL OF SUPERCOMPUTING, 2025, 81 (03):
  • [4] Minimally k-Factor-Critical Graphs for Some Large k
    Jing Guo
    Heping Zhang
    Graphs and Combinatorics, 2023, 39
  • [5] Minimally k-Factor-Critical Graphs for Some Large k
    Guo, Jing
    Zhang, Heping
    GRAPHS AND COMBINATORICS, 2023, 39 (03)
  • [6] Sufficient conditions for k-factor-critical graphs and spanning k-trees of graphs
    Ao, Guoyan
    Liu, Ruifang
    Yuan, Jinjiang
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2025, 61 (02)
  • [7] Perfect integer k-matching, k-factor-critical, and the spectral radius of graphs
    Zhang, Quanbao
    Fan, Dandan
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2024, 701 : 97 - 111
  • [8] Spectral radius and k-factor-critical graphsSpectral radius and k-factor-critical graphsS. Zhou et al.
    Sizhong Zhou
    Zhiren Sun
    Yuli Zhang
    The Journal of Supercomputing, 81 (3)
  • [9] Integer k-matchings of graphs: k-Berge-Tutte formula, k-factor-critical graphs and k-barriers
    Liu, Yan
    Su, Xueli
    Xiong, Danni
    DISCRETE APPLIED MATHEMATICS, 2021, 297 : 120 - 128
  • [10] (3,k)-Factor-Critical Graphs and Toughness
    Minýong Shi
    Xudong Yuan
    Mao-cheng Cai
    Odile Favaron
    Graphs and Combinatorics, 1999, 15 : 463 - 471