A conjecture on k-factor-critical and 3-γ-critical graphs

被引:0
|
作者
WANG Tao1&YU QingLin2 1Institute of Applied Mathematics
2Department of Mathematics and Statistics
机构
基金
加拿大自然科学与工程研究理事会;
关键词
domination critical graph; factor critical; bicritical;
D O I
暂无
中图分类号
O157.5 [图论];
学科分类号
摘要
For a graph G =(V,E),a subset VS is a dominating set if every vertex in V is either in S or is adjacent to a vertex in S.The domination number γ(G) of G is the minimum order of a dominating set in G.A graph G is said to be domination vertex critical,if γ(G-v) < γ(G) for any vertex v in G.A graph G is domination edge critical,if γ(G ∪ e) < γ(G) for any edge e ∈/E(G).We call a graph G k-γ-vertex-critical(resp.k-γ-edge-critical) if it is domination vertex critical(resp.domination edge critical) and γ(G) = k.Ananchuen and Plummer posed the conjecture:Let G be a k-connected graph with the minimum degree at least k+1,where k 2 and k≡|V|(mod 2).If G is 3-γ-edge-critical and claw-free,then G is k-factor-critical.In this paper we present a proof to this conjecture,and we also discuss the properties such as connectivity and bicriticality in 3-γ-vertex-critical claw-free graph.
引用
收藏
页码:348 / 354
页数:7
相关论文
共 50 条
  • [21] (4, k)-Factor-Critical Graphs and Toughness
    徐睿
    于青林
    数学进展, 1999, (06) : 539 - 540
  • [22] (2,k)-Factor-Critical Graphs and Toughness
    Mao-Cheng Cai
    Odile Favaron
    Hao Li
    Graphs and Combinatorics, 1999, 15 : 137 - 142
  • [23] (Δ-k)-critical graphs
    Farzad, B
    Molloy, M
    Reed, B
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2005, 93 (02) : 173 - 185
  • [24] Factor-critical property in 3-dominating-critical graphs
    Wang, Tao
    Yu, Qinglin
    DISCRETE MATHEMATICS, 2009, 309 (05) : 1079 - 1083
  • [25] Factor-critical property in 3-dominating-critical graphs
    Center for Combinatorics, LPMC, Nankai University, Tianjin, China
    不详
    Discrete Math, 1600, 5 (1079-1083):
  • [26] PROOF OF SLATERS CONJECTURE ON K-CRITICAL N-CONNECTED GRAPHS
    SU, JJ
    KEXUE TONGBAO, 1988, 33 (20): : 1675 - 1678
  • [27] A Characterization of 3-(γc, 2)-Critical Claw-Free Graphs Which are not 3-γc-Critical
    Ananchuen, Watcharaphong
    Ananchuen, Nawarat
    Caccetta, Louis
    GRAPHS AND COMBINATORICS, 2010, 26 (03) : 315 - 328
  • [28] A Characterization of 3-(γc, 2)-Critical Claw-Free Graphs Which are not 3-γc-Critical
    Watcharaphong Ananchuen
    Nawarat Ananchuen
    Louis Caccetta
    Graphs and Combinatorics, 2010, 26 : 315 - 328
  • [29] On Connected 3-γL-Dot-Critical Graphs
    Mimouni, Malika
    Ikhlef-Eschouf, Noureddine
    Zamime, Mohamed
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2022, 48 (03) : 979 - 991
  • [30] On the 3-γt-Critical Graphs of Order Δ(G)+3
    Wang, Haoli
    Xu, Xirong
    Yang Yuansheng
    Wang, Lei
    UTILITAS MATHEMATICA, 2011, 84 : 273 - 285