A conjecture on k-factor-critical and 3-γ-critical graphs

被引:0
|
作者
WANG Tao1&YU QingLin2 1Institute of Applied Mathematics
2Department of Mathematics and Statistics
机构
基金
加拿大自然科学与工程研究理事会;
关键词
domination critical graph; factor critical; bicritical;
D O I
暂无
中图分类号
O157.5 [图论];
学科分类号
摘要
For a graph G =(V,E),a subset VS is a dominating set if every vertex in V is either in S or is adjacent to a vertex in S.The domination number γ(G) of G is the minimum order of a dominating set in G.A graph G is said to be domination vertex critical,if γ(G-v) < γ(G) for any vertex v in G.A graph G is domination edge critical,if γ(G ∪ e) < γ(G) for any edge e ∈/E(G).We call a graph G k-γ-vertex-critical(resp.k-γ-edge-critical) if it is domination vertex critical(resp.domination edge critical) and γ(G) = k.Ananchuen and Plummer posed the conjecture:Let G be a k-connected graph with the minimum degree at least k+1,where k 2 and k≡|V|(mod 2).If G is 3-γ-edge-critical and claw-free,then G is k-factor-critical.In this paper we present a proof to this conjecture,and we also discuss the properties such as connectivity and bicriticality in 3-γ-vertex-critical claw-free graph.
引用
收藏
页码:348 / 354
页数:7
相关论文
共 50 条
  • [41] Proof of Mader's conjecture on k-critical n-connected graphs
    Su, JJ
    JOURNAL OF GRAPH THEORY, 2004, 45 (04) : 281 - 297
  • [42] (a, b, k )-critical graphs
    LIU Guizhen and WANG Jianfang Department of Mathematics
    Institute of Applied Mathematics
    Chinese Science Bulletin, 1997, (17) : 1492 - 1493
  • [43] (a,b,k)-critical graphs
    Liu, GZ
    Wang, JF
    CHINESE SCIENCE BULLETIN, 1997, 42 (17): : 1492 - 1493
  • [44] 3- and 4-critical graphs of small even order
    Brinkmann, G
    Steffen, E
    DISCRETE MATHEMATICS, 1997, 169 (1-3) : 193 - 197
  • [45] Counting Critical Subgraphs in k-Critical Graphs
    Jie Ma
    Tianchi Yang
    Combinatorica, 2021, 41 : 669 - 694
  • [46] Reducing Vizing's 2-Factor Conjecture to Meredith Extension of Critical Graphs
    Chen, Xiaodong
    Ji, Qing
    Liu, Mingda
    GRAPHS AND COMBINATORICS, 2020, 36 (05) : 1585 - 1591
  • [47] COUNTING CRITICAL SUBGRAPHS IN k-CRITICAL GRAPHS
    Ma, Jie
    Yang, Tianchi
    COMBINATORICA, 2021, 41 (05) : 669 - 694
  • [48] On 3-γt-vertex critical graphs of diameter three
    Chellali, Mustapha
    Rad, Nader Jafari
    Khodkar, Abdollah
    DISCRETE APPLIED MATHEMATICS, 2012, 160 (4-5) : 676 - 681
  • [49] Reducing Vizing’s 2-Factor Conjecture to Meredith Extension of Critical Graphs
    Xiaodong Chen
    Qing Ji
    Mingda Liu
    Graphs and Combinatorics, 2020, 36 : 1585 - 1591
  • [50] 3-Factor-criticality in domination critical graphs
    Ananchuen, Nawarat
    Plummer, Michael D.
    DISCRETE MATHEMATICS, 2007, 307 (23) : 3006 - 3015