A conjecture on k-factor-critical and 3-γ-critical graphs

被引:0
|
作者
WANG Tao1&YU QingLin2 1Institute of Applied Mathematics
2Department of Mathematics and Statistics
机构
基金
加拿大自然科学与工程研究理事会;
关键词
domination critical graph; factor critical; bicritical;
D O I
暂无
中图分类号
O157.5 [图论];
学科分类号
摘要
For a graph G =(V,E),a subset VS is a dominating set if every vertex in V is either in S or is adjacent to a vertex in S.The domination number γ(G) of G is the minimum order of a dominating set in G.A graph G is said to be domination vertex critical,if γ(G-v) < γ(G) for any vertex v in G.A graph G is domination edge critical,if γ(G ∪ e) < γ(G) for any edge e ∈/E(G).We call a graph G k-γ-vertex-critical(resp.k-γ-edge-critical) if it is domination vertex critical(resp.domination edge critical) and γ(G) = k.Ananchuen and Plummer posed the conjecture:Let G be a k-connected graph with the minimum degree at least k+1,where k 2 and k≡|V|(mod 2).If G is 3-γ-edge-critical and claw-free,then G is k-factor-critical.In this paper we present a proof to this conjecture,and we also discuss the properties such as connectivity and bicriticality in 3-γ-vertex-critical claw-free graph.
引用
收藏
页码:348 / 354
页数:7
相关论文
共 50 条
  • [31] Mader’s Conjecture On Extremely Critical Graphs
    Matthias Kriesell
    Combinatorica, 2006, 26 : 277 - 314
  • [32] ON THE STRONG PERFECT GRAPH CONJECTURE AND CRITICAL GRAPHS
    SRIDHARAN, MR
    GEORGE, OT
    DISCRETE MATHEMATICS, 1982, 41 (01) : 101 - 104
  • [33] Mader's conjecture on extremely critical graphs
    Kriesell, Matthias
    COMBINATORICA, 2006, 26 (03) : 277 - 314
  • [34] Remarks on Fractional ID-k-factor-critical Graphs
    Si-zhong Zhou
    Lan Xu
    Zu-run Xu
    Acta Mathematicae Applicatae Sinica, English Series, 2019, 35 : 458 - 464
  • [35] Remarks on Fractional ID-k-factor-critical Graphs
    Zhou, Si-zhong
    Xu, Lan
    Xu, Zu-run
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2019, 35 (02): : 458 - 464
  • [36] Remarks on Fractional ID-k-factor-critical Graphs
    Si-zhong ZHOU
    Lan XU
    Zu-run XU
    ActaMathematicaeApplicataeSinica, 2019, 35 (02) : 458 - 464
  • [37] A characterization of maximal non-k-factor-critical graphs
    Ananchuen, N.
    Caccetta, L.
    Ananchuen, W.
    DISCRETE MATHEMATICS, 2007, 307 (01) : 108 - 114
  • [38] A result on fractional ID-k-factor-critical graphs
    1600, Charles Babbage Research Centre (87):
  • [39] Matching and Factor-Critical Property in 3-Domination-Critical Graphs
    Wang, Tao
    Yu, Qinglin
    UTILITAS MATHEMATICA, 2010, 83 : 159 - 170
  • [40] PROOF OF SLATER'S CONJECTURE ON k-CRITICAL n-CONNECTED GRAPHS
    苏健基
    Science Bulletin, 1988, (20) : 1675 - 1678