Sufficient conditions for k-factor-critical graphs and spanning k-trees of graphs
被引:0
|
作者:
Ao, Guoyan
论文数: 0引用数: 0
h-index: 0
机构:
Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Henan, Peoples R China
Hulunbuir Univ, Sch Math & Phys, Hailar 021008, Inner Mongolia, Peoples R ChinaZhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Henan, Peoples R China
Ao, Guoyan
[1
,2
]
Liu, Ruifang
论文数: 0引用数: 0
h-index: 0
机构:
Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Henan, Peoples R ChinaZhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Henan, Peoples R China
Liu, Ruifang
[1
]
Yuan, Jinjiang
论文数: 0引用数: 0
h-index: 0
机构:
Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Henan, Peoples R ChinaZhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Henan, Peoples R China
Yuan, Jinjiang
[1
]
机构:
[1] Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Henan, Peoples R China
[2] Hulunbuir Univ, Sch Math & Phys, Hailar 021008, Inner Mongolia, Peoples R China
For any integer k >= 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 1$$\end{document}, a graph G is said to be k-factor-critical if G-S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G-S$$\end{document} has a perfect matching for each S subset of V(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S\subseteq V(G)$$\end{document} with |S|=k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|S|=k$$\end{document}. In this paper, we present a sufficient condition in terms of the number of r-cliques to guarantee a graph with minimum degree at least delta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document} to be k-factor-critical, which improves the result of Fan and Lin (Spectral conditions for k-extendability and k-factors of bipartite graphs, arXiv: 2211.09304). For any integer k >= 2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 2,$$\end{document} a spanning k-tree of a connected graph G is a spanning tree in which every vertex has degree at most k. Neumann-Lara and Rivera-Campo (Combinatorica 11:55-61, 1991) proved that, for an m-connected graph G with m >= 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m\ge 2$$\end{document}, if its independence number alpha(G)<=(k-1)m+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha (G)\le (k-1)m+1$$\end{document}, then G contains a spanning k-tree. Motivated by the above result, we provide tight spectral conditions for an m-connected graph to contain a spanning k-tree.
机构:
Univ Fed Rio de Janeiro, COPPE Prod, Rio De Janeiro, RJ, BrazilUniv Fed Rio de Janeiro, COPPE Prod, Rio De Janeiro, RJ, Brazil
Oliveira, Allana S. S.
de Freitas, Maria Aguieiras A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio de Janeiro, COPPE Prod, Rio De Janeiro, RJ, Brazil
Univ Fed Rio de Janeiro, Inst Matemat, Rio De Janeiro, RJ, BrazilUniv Fed Rio de Janeiro, COPPE Prod, Rio De Janeiro, RJ, Brazil
de Freitas, Maria Aguieiras A.
Vinagre, Cybele T. M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Fluminense, Inst Matemat & Estat, Niteroi, RJ, BrazilUniv Fed Rio de Janeiro, COPPE Prod, Rio De Janeiro, RJ, Brazil
Vinagre, Cybele T. M.
Markenzon, Lilian
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio de Janeiro, PPGI NCE, Rio De Janeiro, RJ, BrazilUniv Fed Rio de Janeiro, COPPE Prod, Rio De Janeiro, RJ, Brazil
机构:
Kitasato Univ, Coll Liberal Arts & Sci, Minami Ku, 1-15-1 Kitasato, Sagamihara, Kanagawa 2520373, JapanKitasato Univ, Coll Liberal Arts & Sci, Minami Ku, 1-15-1 Kitasato, Sagamihara, Kanagawa 2520373, Japan
Furuya, Michitaka
Maezawa, Shun-ichi
论文数: 0引用数: 0
h-index: 0
机构:
Yokohama Natl Univ, Grad Sch Environm & Informat Sci, Hodogaya Ku, 79-1 Tokiwadai, Yokohama, Kanagawa 2408501, JapanKitasato Univ, Coll Liberal Arts & Sci, Minami Ku, 1-15-1 Kitasato, Sagamihara, Kanagawa 2520373, Japan
Maezawa, Shun-ichi
Matsubara, Ryota
论文数: 0引用数: 0
h-index: 0
机构:
Shibaura Inst Technol, Dept Math, Minuma Ku, 307 Fukasaku, Saitama 3378577, JapanKitasato Univ, Coll Liberal Arts & Sci, Minami Ku, 1-15-1 Kitasato, Sagamihara, Kanagawa 2520373, Japan
Matsubara, Ryota
Matsuda, Haruhide
论文数: 0引用数: 0
h-index: 0
机构:
Shibaura Inst Technol, Dept Math, Minuma Ku, 307 Fukasaku, Saitama 3378577, JapanKitasato Univ, Coll Liberal Arts & Sci, Minami Ku, 1-15-1 Kitasato, Sagamihara, Kanagawa 2520373, Japan
Matsuda, Haruhide
Tsuchiya, Shoichi
论文数: 0引用数: 0
h-index: 0
机构:
Senshu Univ, Sch Network & Informat, Tama Ku, 2-1-1 Higashimita, Kawasaki, Kanagawa 2148580, JapanKitasato Univ, Coll Liberal Arts & Sci, Minami Ku, 1-15-1 Kitasato, Sagamihara, Kanagawa 2520373, Japan