Sufficient conditions for k-factor-critical graphs and spanning k-trees of graphs

被引:0
|
作者
Ao, Guoyan [1 ,2 ]
Liu, Ruifang [1 ]
Yuan, Jinjiang [1 ]
机构
[1] Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Henan, Peoples R China
[2] Hulunbuir Univ, Sch Math & Phys, Hailar 021008, Inner Mongolia, Peoples R China
基金
中国国家自然科学基金;
关键词
k-factor-critical; spanning k-tree; r-clique; m-connected graphs; spectral radius; NUMBER; TOUGHNESS; CLIQUES; THEOREM;
D O I
10.1007/s10801-025-01396-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For any integer k >= 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 1$$\end{document}, a graph G is said to be k-factor-critical if G-S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G-S$$\end{document} has a perfect matching for each S subset of V(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S\subseteq V(G)$$\end{document} with |S|=k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|S|=k$$\end{document}. In this paper, we present a sufficient condition in terms of the number of r-cliques to guarantee a graph with minimum degree at least delta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document} to be k-factor-critical, which improves the result of Fan and Lin (Spectral conditions for k-extendability and k-factors of bipartite graphs, arXiv: 2211.09304). For any integer k >= 2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 2,$$\end{document} a spanning k-tree of a connected graph G is a spanning tree in which every vertex has degree at most k. Neumann-Lara and Rivera-Campo (Combinatorica 11:55-61, 1991) proved that, for an m-connected graph G with m >= 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m\ge 2$$\end{document}, if its independence number alpha(G)<=(k-1)m+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha (G)\le (k-1)m+1$$\end{document}, then G contains a spanning k-tree. Motivated by the above result, we provide tight spectral conditions for an m-connected graph to contain a spanning k-tree.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] On (k+1) -line graphs of k-trees and their nullities
    Oliveira, Allana S. S.
    de Freitas, Maria Aguieiras A.
    Vinagre, Cybele T. M.
    Markenzon, Lilian
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 614 : 244 - 255
  • [22] Degree Sum Condition for the Existence of Spanning k-Trees in Star-Free Graphs
    Furuya, Michitaka
    Maezawa, Shun-ichi
    Matsubara, Ryota
    Matsuda, Haruhide
    Tsuchiya, Shoichi
    Yashima, Takamasa
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2022, 42 (01) : 5 - 13
  • [23] Closure and Spanning k-Trees
    Matsubara, Ryota
    Tsugaki, Masao
    Yamashita, Tomoki
    GRAPHS AND COMBINATORICS, 2014, 30 (04) : 957 - 962
  • [24] Some sufficient conditions for a graph with minimum degree to be k-factor-critical
    Zheng, Lin
    Li, Shuchao
    Luo, Xiaobing
    Wang, Guangfu
    DISCRETE APPLIED MATHEMATICS, 2024, 348 : 279 - 291
  • [25] Closure and Spanning k-Trees
    Ryota Matsubara
    Masao Tsugaki
    Tomoki Yamashita
    Graphs and Combinatorics, 2014, 30 : 957 - 962
  • [26] A characterization of k-trees that are interval p-graphs
    Lundgren, J. Richard
    Flesch, Breeann
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2011, 49 : 227 - 237
  • [27] Which k-trees are cover-incomparability graphs?
    Maxova, Jana
    Dubcova, Miroslava
    Pavlikova, Pavia
    Turzik, Daniel
    DISCRETE APPLIED MATHEMATICS, 2014, 167 : 222 - 227
  • [28] Tools for multicoloring with applications to planar graphs and partial k-trees
    Halldórsson, MM
    Kortsarz, G
    JOURNAL OF ALGORITHMS, 2002, 42 (02) : 334 - 366
  • [29] A new sufficient condition for graphs to be (a, b, k)-critical graphs
    Zhou, Sizhong
    ARS COMBINATORIA, 2015, 118 : 191 - 199
  • [30] Transversals of longest cycles in partial k-trees and chordal graphs
    Gutierrez, Juan
    JOURNAL OF GRAPH THEORY, 2021, 98 (04) : 589 - 603