Sufficient conditions for k-factor-critical graphs and spanning k-trees of graphs

被引:0
|
作者
Ao, Guoyan [1 ,2 ]
Liu, Ruifang [1 ]
Yuan, Jinjiang [1 ]
机构
[1] Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Henan, Peoples R China
[2] Hulunbuir Univ, Sch Math & Phys, Hailar 021008, Inner Mongolia, Peoples R China
基金
中国国家自然科学基金;
关键词
k-factor-critical; spanning k-tree; r-clique; m-connected graphs; spectral radius; NUMBER; TOUGHNESS; CLIQUES; THEOREM;
D O I
10.1007/s10801-025-01396-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For any integer k >= 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 1$$\end{document}, a graph G is said to be k-factor-critical if G-S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G-S$$\end{document} has a perfect matching for each S subset of V(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S\subseteq V(G)$$\end{document} with |S|=k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|S|=k$$\end{document}. In this paper, we present a sufficient condition in terms of the number of r-cliques to guarantee a graph with minimum degree at least delta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document} to be k-factor-critical, which improves the result of Fan and Lin (Spectral conditions for k-extendability and k-factors of bipartite graphs, arXiv: 2211.09304). For any integer k >= 2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 2,$$\end{document} a spanning k-tree of a connected graph G is a spanning tree in which every vertex has degree at most k. Neumann-Lara and Rivera-Campo (Combinatorica 11:55-61, 1991) proved that, for an m-connected graph G with m >= 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m\ge 2$$\end{document}, if its independence number alpha(G)<=(k-1)m+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha (G)\le (k-1)m+1$$\end{document}, then G contains a spanning k-tree. Motivated by the above result, we provide tight spectral conditions for an m-connected graph to contain a spanning k-tree.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Spanning k-ended trees of bipartite graphs
    Kano, Mikio
    Matsuda, Haruhide
    Tsugaki, Masao
    Yan, Guiying
    DISCRETE MATHEMATICS, 2013, 313 (24) : 2903 - 2907
  • [32] Long paths and toughness of k-trees and chordal planar graphs
    Kabela, Adam
    DISCRETE MATHEMATICS, 2019, 342 (01) : 55 - 63
  • [33] Sufficient conditions for k-connected graphs and k-leaf-connected graphs
    An, Yonghong
    Zhang, Guizhi
    FILOMAT, 2024, 38 (18) : 6601 - 6608
  • [34] Finding independent spanning trees in partial k-trees
    Zhou, X
    Nishizeki, T
    ALGORITHM AND COMPUTATION, PROCEEDINGS, 2001, 1969 : 168 - 179
  • [35] Sufficient conditions for graphs to be spanning connected
    Sabir, Eminjan
    Meng, Jixiang
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 378
  • [36] COMPLETELY INDEPENDENT SPANNING TREES IN (PARTIAL) k-TREES
    Matsushita, Masayoshi
    Otachi, Yota
    Araki, Toru
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2015, 35 (03) : 427 - 437
  • [37] Forbidden subgraphs and the existence of spanning k-trees
    Ota, Katsuhiro
    Sugiyama, Takeshi
    DISCRETE MATHEMATICS, 2010, 310 (24) : 3506 - 3511
  • [38] Graph limits of random graphs from a subset of connected k-trees
    Drmota, Michael
    Jin, Emma Yu
    Stufler, Benedikt
    RANDOM STRUCTURES & ALGORITHMS, 2019, 55 (01) : 125 - 152
  • [39] Power of k choices and rainbow spanning trees in random graphs
    Bal, Deepak
    Bennett, Patrick
    Frieze, Alan
    Pralat, Pawel
    ELECTRONIC JOURNAL OF COMBINATORICS, 2015, 22 (01):
  • [40] Sufficient conditions for the existence of spanning colored trees in edge-colored graphs
    Agueda, R.
    Borozan, V.
    Manoussakis, Y.
    Mendy, G.
    Muthu, R.
    DISCRETE MATHEMATICS, 2012, 312 (17) : 2694 - 2699