Sufficient conditions for k-factor-critical graphs and spanning k-trees of graphs

被引:0
|
作者
Ao, Guoyan [1 ,2 ]
Liu, Ruifang [1 ]
Yuan, Jinjiang [1 ]
机构
[1] Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Henan, Peoples R China
[2] Hulunbuir Univ, Sch Math & Phys, Hailar 021008, Inner Mongolia, Peoples R China
基金
中国国家自然科学基金;
关键词
k-factor-critical; spanning k-tree; r-clique; m-connected graphs; spectral radius; NUMBER; TOUGHNESS; CLIQUES; THEOREM;
D O I
10.1007/s10801-025-01396-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For any integer k >= 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 1$$\end{document}, a graph G is said to be k-factor-critical if G-S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G-S$$\end{document} has a perfect matching for each S subset of V(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S\subseteq V(G)$$\end{document} with |S|=k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|S|=k$$\end{document}. In this paper, we present a sufficient condition in terms of the number of r-cliques to guarantee a graph with minimum degree at least delta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document} to be k-factor-critical, which improves the result of Fan and Lin (Spectral conditions for k-extendability and k-factors of bipartite graphs, arXiv: 2211.09304). For any integer k >= 2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 2,$$\end{document} a spanning k-tree of a connected graph G is a spanning tree in which every vertex has degree at most k. Neumann-Lara and Rivera-Campo (Combinatorica 11:55-61, 1991) proved that, for an m-connected graph G with m >= 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m\ge 2$$\end{document}, if its independence number alpha(G)<=(k-1)m+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha (G)\le (k-1)m+1$$\end{document}, then G contains a spanning k-tree. Motivated by the above result, we provide tight spectral conditions for an m-connected graph to contain a spanning k-tree.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] On Sufficient Conditions for k-Leaf-Connected Graphs
    Guoyan AO
    Xia HONG
    Journal of Mathematical Research with Applications, 2024, 44 (06) : 711 - 722
  • [42] Some sufficient conditions on k-connected graphs
    Zhou, Qiannan
    Wang, Ligong
    Lu, Yong
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 325 : 332 - 339
  • [43] Spanning trees with at most k leaves in K1,4-free graphs
    Kyaw, Aung
    DISCRETE MATHEMATICS, 2011, 311 (20) : 2135 - 2142
  • [44] On sufficient conditions for spanning structures in dense graphs
    Lang, Richard
    Sanhueza-Matamala, Nicolas
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2023, 127 (03) : 709 - 791
  • [45] Lower bounds for the game colouring number of partial k-trees and planar graphs
    Wu, Jiaojiao
    Zhu, Xuding
    DISCRETE MATHEMATICS, 2008, 308 (12) : 2637 - 2642
  • [46] Definability equals recognizability for k-outerplanar graphs and l-chordal partial k-trees
    Jaffke, Lars
    Bodlaender, Hans L.
    Heggernes, Pinar
    Telle, Jan Arne
    EUROPEAN JOURNAL OF COMBINATORICS, 2017, 66 : 191 - 234
  • [47] Parallel recognition algorithms for chordal_planar graphs and planar k-trees
    Panda, BS
    Das, SK
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2005, 65 (08) : 922 - 926
  • [48] Neighborhood Conditions for Fractional ID-k-factor-critical Graphs
    Zhou, Si-zhong
    Sun, Zhi-ren
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2018, 34 (03): : 636 - 644
  • [49] Degree Conditions of Fractional ID-k-Factor-Critical Graphs
    Chang, Renying
    Liu, Guizhen
    Zhu, Yan
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2010, 33 (03) : 355 - 360
  • [50] Neighborhood Conditions for Fractional ID-k-factor-critical Graphs
    Si-zhong ZHOU
    Zhi-ren SUN
    ActaMathematicaeApplicataeSinica, 2018, 34 (03) : 636 - 644