Sufficient conditions for k-factor-critical graphs and spanning k-trees of graphs

被引:0
|
作者
Ao, Guoyan [1 ,2 ]
Liu, Ruifang [1 ]
Yuan, Jinjiang [1 ]
机构
[1] Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Henan, Peoples R China
[2] Hulunbuir Univ, Sch Math & Phys, Hailar 021008, Inner Mongolia, Peoples R China
基金
中国国家自然科学基金;
关键词
k-factor-critical; spanning k-tree; r-clique; m-connected graphs; spectral radius; NUMBER; TOUGHNESS; CLIQUES; THEOREM;
D O I
10.1007/s10801-025-01396-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For any integer k >= 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 1$$\end{document}, a graph G is said to be k-factor-critical if G-S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G-S$$\end{document} has a perfect matching for each S subset of V(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S\subseteq V(G)$$\end{document} with |S|=k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|S|=k$$\end{document}. In this paper, we present a sufficient condition in terms of the number of r-cliques to guarantee a graph with minimum degree at least delta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document} to be k-factor-critical, which improves the result of Fan and Lin (Spectral conditions for k-extendability and k-factors of bipartite graphs, arXiv: 2211.09304). For any integer k >= 2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 2,$$\end{document} a spanning k-tree of a connected graph G is a spanning tree in which every vertex has degree at most k. Neumann-Lara and Rivera-Campo (Combinatorica 11:55-61, 1991) proved that, for an m-connected graph G with m >= 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m\ge 2$$\end{document}, if its independence number alpha(G)<=(k-1)m+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha (G)\le (k-1)m+1$$\end{document}, then G contains a spanning k-tree. Motivated by the above result, we provide tight spectral conditions for an m-connected graph to contain a spanning k-tree.
引用
收藏
页数:12
相关论文
共 50 条
  • [11] A conjecture on k-factor-critical and 3-γ-critical graphs
    Tao Wang
    QingLin Yu
    Science China Mathematics, 2010, 53 : 1385 - 1391
  • [12] A conjecture on k-factor-critical and 3-γ-critical graphs
    Wang Tao
    Yu QingLin
    SCIENCE CHINA-MATHEMATICS, 2010, 53 (05) : 1385 - 1391
  • [13] Spanning k-trees and distance signless Laplacian spectral radius of graphs
    Zhou, Sizhong
    Zhang, Yuli
    Liu, Hongxia
    DISCRETE APPLIED MATHEMATICS, 2024, 358 : 358 - 365
  • [14] Independence Number and k-Trees of Graphs
    Yan, Zheng
    GRAPHS AND COMBINATORICS, 2017, 33 (05) : 1089 - 1093
  • [15] Generation of K-trees of undirected graphs
    Patvardhan, C
    Prasad, VC
    Pyara, VP
    IEEE TRANSACTIONS ON RELIABILITY, 1997, 46 (02) : 208 - 211
  • [16] Independence Number and k-Trees of Graphs
    Zheng Yan
    Graphs and Combinatorics, 2017, 33 : 1089 - 1093
  • [17] Integer k-matchings of graphs: k-Berge-Tutte formula, k-factor-critical graphs and k-barriers
    Liu, Yan
    Su, Xueli
    Xiong, Danni
    DISCRETE APPLIED MATHEMATICS, 2021, 297 : 120 - 128
  • [18] Perfect integer k-matching, k-factor-critical, and the spectral radius of graphs
    Zhang, Quanbao
    Fan, Dandan
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2024, 701 : 97 - 111
  • [19] Some New Sufficient Conditions for Graphs to be (a, b, k)-Critical Graphs
    Zhou, Sizhong
    Xu, Zurun
    Zong, Minggang
    ARS COMBINATORIA, 2011, 102 : 11 - 20
  • [20] m-dominating k-trees of graphs
    Kano, Mikio
    Ozeki, Kenta
    Tsugaki, Masao
    Yan, Guiying
    DISCRETE MATHEMATICS, 2016, 339 (02) : 729 - 736