Limits of Random Trees. II

被引:0
|
作者
A. Deák
机构
[1] MTA-ELTE “Numerical Analysis and Large Networks” Research Group,
来源
Acta Mathematica Hungarica | 2015年 / 145卷
关键词
sparse graph limit; random tree; 05C80;
D O I
暂无
中图分类号
学科分类号
摘要
Local convergence of bounded degree graphs was introduced by Benjamini and Schramm. This result was extended further by Lyons to bounded average degree graphs. In this paper we study the convergence of random tree sequences with given degree distributions. Denote by Dn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{D}_n}$$\end{document} the set of possible degree sequences of a labeled tree on n nodes. Let Dn be a random variable on Dn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{D}_n}$$\end{document} and T(Dn) be a uniform random labeled tree with degree sequence Dn. We show that the sequence T(Dn) converges in probability if and only if Dn→D=(D(i))i=1∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\bf D}_n \rightarrow {\bf D} = ({\bf D}(i))^{\infty}_{i=1}}$$\end{document}, where D(i)∼D(j),E(D(1))=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\bf D}(i) \sim {\bf D}(j), \mathbb{E}({\bf D}(1)) = 2}$$\end{document} and D(1) is a random variable on N+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{N}^+}$$\end{document}.
引用
下载
收藏
页码:205 / 219
页数:14
相关论文
共 50 条
  • [1] Limits of Random Trees. II
    Deak, A.
    ACTA MATHEMATICA HUNGARICA, 2015, 145 (01) : 205 - 219
  • [2] Classification of images using spatial random trees.
    Wang, W.
    Pollak, I.
    Bouman, C. A.
    Harper, M. P.
    2005 IEEE/SP 13th Workshop on Statistical Signal Processing (SSP), Vols 1 and 2, 2005, : 409 - 412
  • [3] Limits of random trees
    Attila Deák
    Acta Mathematica Hungarica, 2013, 141 : 185 - 201
  • [4] Limits of random trees
    Deak, A.
    ACTA MATHEMATICA HUNGARICA, 2013, 141 (1-2) : 185 - 201
  • [5] Tree limits and limits of random trees
    Janson, Svante
    COMBINATORICS PROBABILITY & COMPUTING, 2021, 30 (06): : 849 - 893
  • [6] Resistance of XLPE to water trees. Part II
    Zhonghuai, Fan
    Wire Industry, 1993, 60 (718): : 542 - 544
  • [7] Vermont trees.
    Fuller, Geo. D.
    BOTANICAL GAZETTE, 1917, 64 (04): : 352 - 352
  • [8] The growth of trees.
    Backman, G
    WILHELM ROUX ARCHIV FUR ENTWICKLUNGSMECHANIK DER ORGANISMEN, 1942, 141 (03): : 455 - 499
  • [9] Tell It to the Trees.
    Haun, Beverley
    CANADIAN LITERATURE, 2012, (215): : 142 - 145
  • [10] Californian trees.
    Bean, WJ
    NATURE, 1911, 87 : 452 - 453