Limits of Random Trees. II

被引:0
|
作者
A. Deák
机构
[1] MTA-ELTE “Numerical Analysis and Large Networks” Research Group,
来源
Acta Mathematica Hungarica | 2015年 / 145卷
关键词
sparse graph limit; random tree; 05C80;
D O I
暂无
中图分类号
学科分类号
摘要
Local convergence of bounded degree graphs was introduced by Benjamini and Schramm. This result was extended further by Lyons to bounded average degree graphs. In this paper we study the convergence of random tree sequences with given degree distributions. Denote by Dn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{D}_n}$$\end{document} the set of possible degree sequences of a labeled tree on n nodes. Let Dn be a random variable on Dn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{D}_n}$$\end{document} and T(Dn) be a uniform random labeled tree with degree sequence Dn. We show that the sequence T(Dn) converges in probability if and only if Dn→D=(D(i))i=1∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\bf D}_n \rightarrow {\bf D} = ({\bf D}(i))^{\infty}_{i=1}}$$\end{document}, where D(i)∼D(j),E(D(1))=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\bf D}(i) \sim {\bf D}(j), \mathbb{E}({\bf D}(1)) = 2}$$\end{document} and D(1) is a random variable on N+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{N}^+}$$\end{document}.
引用
下载
收藏
页码:205 / 219
页数:14
相关论文
共 50 条
  • [41] Backbone scaling limits for random walks on random critical trees
    Ben Arous, Gerard
    Cabezas, Manuel
    Fribergh, Alexander
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2024, 60 (03): : 1814 - 1848
  • [42] NOTES ON NORTH AMERICAN TREES. III. TILIA. II
    Sargent, C. S.
    BOTANICAL GAZETTE, 1918, 66 (06): : 494 - 511
  • [43] Under Trees. The Germans and the Forest
    Wenzel, Otto
    ZEITSCHRIFT FUR GESCHICHTSWISSENSCHAFT, 2012, 60 (7-8) : 661 - 662
  • [44] Retention of leaves by deciduous trees.
    Smith, DT
    NATURE, 1902, 66 : 631 - 631
  • [45] PARALLEL SEARCHES OF GAME TREES.
    Usui, Hiromoto
    Yamashita, Masafumi
    Imai, Masaharu
    Ibaraki, Toshihide
    Systems and Computers in Japan, 1987, 18 (08): : 97 - 109
  • [46] Graph limits of random unlabelledk-trees
    Jin, Emma Yu
    Stufler, Benedikt
    COMBINATORICS PROBABILITY & COMPUTING, 2020, 29 (05): : 722 - 746
  • [47] Scaling limits of random Pólya trees
    Konstantinos Panagiotou
    Benedikt Stufler
    Probability Theory and Related Fields, 2018, 170 : 801 - 820
  • [48] Root-pressure in trees.
    Ewart, Alfred J.
    ANNALS OF BOTANY, 1904, 18 (69-72) : 181 - 182
  • [49] Chemical characteristics of Australian trees.
    不详
    NATURE, 1923, 111 : 649 - 650
  • [50] Kerosene injury to shade trees.
    Stone, RE
    PHYTOPATHOLOGY, 1919, 9 (10) : 476 - 477