Local convergence of bounded degree graphs was introduced by Benjamini and Schramm. This result was extended further by Lyons to bounded average degree graphs. In this paper we study the convergence of random tree sequences with given degree distributions. Denote by Dn\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal{D}_n}$$\end{document} the set of possible degree sequences of a labeled tree on n nodes. Let Dn be a random variable on Dn\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal{D}_n}$$\end{document} and T(Dn) be a uniform random labeled tree with degree sequence Dn. We show that the sequence T(Dn) converges in probability if and only if Dn→D=(D(i))i=1∞\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\bf D}_n \rightarrow {\bf D} = ({\bf D}(i))^{\infty}_{i=1}}$$\end{document}, where D(i)∼D(j),E(D(1))=2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\bf D}(i) \sim {\bf D}(j), \mathbb{E}({\bf D}(1)) = 2}$$\end{document} and D(1) is a random variable on N+\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb{N}^+}$$\end{document}.
机构:
Univ of Maryland, College Park, MD,, USA, Univ of Maryland, College Park, MD, USAUniv of Maryland, College Park, MD,, USA, Univ of Maryland, College Park, MD, USA
Dattatreya, G.R.
Kanal, L.N.
论文数: 0引用数: 0
h-index: 0
机构:
Univ of Maryland, College Park, MD,, USA, Univ of Maryland, College Park, MD, USAUniv of Maryland, College Park, MD,, USA, Univ of Maryland, College Park, MD, USA
Kanal, L.N.
IEEE Transactions on Systems, Man and Cybernetics,
1986,
SMC-16
(02):
: 208
-
218