Scaling limits of random Polya trees

被引:9
|
作者
Panagiotou, Konstantinos [1 ]
Stufler, Benedikt [2 ]
机构
[1] Ludwig Maximilians Univ Munchen, Inst Math, Theresienstr 39, D-80333 Munich, Germany
[2] Ecole Normale Super Lyon, Unite Math Pures & Appl, 46 Allee Italie, F-69364 Lyon, France
关键词
Random trees; Scaling limits; Polya trees; GALTON-WATSON; GRAPHS;
D O I
10.1007/s00440-017-0770-4
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Polya trees are rooted trees considered up to symmetry. We establish the convergence of large uniform random Polya trees with arbitrary degree restrictions to Aldous' Continuum Random Tree with respect to the Gromov-Hausdorff metric. Our proof is short and elementary, and it is based on a novel decomposition: it shows that the global shape of a random Polya tree is essentially dictated by a large Galton-Watson tree that it contains. We also derive sub-Gaussian tail bounds for both the height and the width, which are optimal up to constant factors in the exponent.
引用
收藏
页码:801 / 820
页数:20
相关论文
共 50 条
  • [1] Scaling limits of random Pólya trees
    Konstantinos Panagiotou
    Benedikt Stufler
    [J]. Probability Theory and Related Fields, 2018, 170 : 801 - 820
  • [2] Backbone scaling limits for random walks on random critical trees
    Ben Arous, Gerard
    Cabezas, Manuel
    Fribergh, Alexander
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2024, 60 (03): : 1814 - 1848
  • [3] POLYA TREES AND RANDOM DISTRIBUTIONS
    MAULDIN, RD
    SUDDERTH, WD
    WILLIAMS, SC
    [J]. ANNALS OF STATISTICS, 1992, 20 (03): : 1203 - 1221
  • [4] Scaling limits for some random trees constructed inhomogeneously
    Ross, Nathan
    Wen, Yuting
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2018, 23
  • [5] SCHRODER'S PROBLEMS AND SCALING LIMITS OF RANDOM TREES
    Pitman, Jim
    Rizzolo, Douglas
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 367 (10) : 6943 - 6969
  • [6] SCALING LIMITS FOR SIMPLE RANDOM WALKS ON RANDOM ORDERED GRAPH TREES
    Croydon, D. A.
    [J]. ADVANCES IN APPLIED PROBABILITY, 2010, 42 (02) : 528 - 558
  • [7] Scaling limits for minimal and random spanning trees in two dimensions
    Aizenman, M
    Burchard, A
    Newman, CM
    Wilson, DB
    [J]. RANDOM STRUCTURES & ALGORITHMS, 1999, 15 (3-4) : 319 - 367
  • [8] The degree profile of random Polya trees
    Gittenberger, Bernhard
    Kraus, Veronika
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2012, 119 (07) : 1528 - 1557
  • [9] SCALING LIMITS OF MARKOV BRANCHING TREES WITH APPLICATIONS TO GALTON-WATSON AND RANDOM UNORDERED TREES
    Haas, Benedicte
    Miermont, Gregory
    [J]. ANNALS OF PROBABILITY, 2012, 40 (06): : 2589 - 2666
  • [10] Limits of random trees
    Attila Deák
    [J]. Acta Mathematica Hungarica, 2013, 141 : 185 - 201