Scaling limits of random Polya trees

被引:9
|
作者
Panagiotou, Konstantinos [1 ]
Stufler, Benedikt [2 ]
机构
[1] Ludwig Maximilians Univ Munchen, Inst Math, Theresienstr 39, D-80333 Munich, Germany
[2] Ecole Normale Super Lyon, Unite Math Pures & Appl, 46 Allee Italie, F-69364 Lyon, France
关键词
Random trees; Scaling limits; Polya trees; GALTON-WATSON; GRAPHS;
D O I
10.1007/s00440-017-0770-4
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Polya trees are rooted trees considered up to symmetry. We establish the convergence of large uniform random Polya trees with arbitrary degree restrictions to Aldous' Continuum Random Tree with respect to the Gromov-Hausdorff metric. Our proof is short and elementary, and it is based on a novel decomposition: it shows that the global shape of a random Polya tree is essentially dictated by a large Galton-Watson tree that it contains. We also derive sub-Gaussian tail bounds for both the height and the width, which are optimal up to constant factors in the exponent.
引用
收藏
页码:801 / 820
页数:20
相关论文
共 50 条
  • [21] SCALING LIMITS FOR A RANDOM BOXES MODEL
    Aurzada, F.
    Schwinn, S.
    [J]. ADVANCES IN APPLIED PROBABILITY, 2019, 51 (03) : 773 - 801
  • [22] SCALING LIMITS FOR ASSOCIATED RANDOM MEASURES
    BURTON, R
    WAYMIRE, E
    [J]. ANNALS OF PROBABILITY, 1985, 13 (04): : 1267 - 1278
  • [23] Limits of Random Trees. II
    A. Deák
    [J]. Acta Mathematica Hungarica, 2015, 145 : 205 - 219
  • [24] Limits of Random Trees. II
    Deak, A.
    [J]. ACTA MATHEMATICA HUNGARICA, 2015, 145 (01) : 205 - 219
  • [25] Scaling Limits for Random Quadrangulations of Positive Genus
    Bettinelli, Jeremie
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2010, 15 : 1594 - 1644
  • [26] SCALING LIMITS FOR POINT RANDOM-FIELDS
    BURTON, RM
    WAYMIRE, E
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 1984, 15 (02) : 237 - 251
  • [27] Scaling limits for gradient systems in random environment
    Goncalves, Patricia
    Jara, Milton
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2008, 131 (04) : 691 - 716
  • [28] Scaling limits for the peeling process on random maps
    Curien, Nicolas
    Le Gall, Jean-Francois
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2017, 53 (01): : 322 - 357
  • [29] On the sphericity of scaling limits of random planar quadrangulations
    Miermont, Gregory
    [J]. ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2008, 13 : 248 - 257
  • [30] RANDOM CURVES, SCALING LIMITS AND LOEWNER EVOLUTIONS
    Kemppainen, Antti
    Smirnov, Stanislav
    [J]. ANNALS OF PROBABILITY, 2017, 45 (02): : 698 - 779