On the sphericity of scaling limits of random planar quadrangulations

被引:35
|
作者
Miermont, Gregory [1 ]
机构
[1] Univ Paris 06, F-75013 Paris, France
关键词
random planar maps; scaling limits; Gromov-Hausdorff convergence; spherical topology;
D O I
10.1214/ECP.v13-1368
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We give a new proof of a theorem by Le Gall & Paulin, showing that scaling limits of random planar quadrangulations are homeomorphic to the 2-sphere. The main geometric tool is a reinforcement of the notion of Gromov-Hausdorff convergence, called 1-regular convergence, that preserves topological properties of metric surfaces.
引用
收藏
页码:248 / 257
页数:10
相关论文
共 50 条
  • [1] Scaling Limits for Random Quadrangulations of Positive Genus
    Bettinelli, Jeremie
    ELECTRONIC JOURNAL OF PROBABILITY, 2010, 15 : 1594 - 1644
  • [2] Scaling limit of random planar quadrangulations with a boundary
    Bettinelli, Jeremie
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2015, 51 (02): : 432 - 477
  • [3] THE TOPOLOGY OF SCALING LIMITS OF POSITIVE GENUS RANDOM QUADRANGULATIONS
    Bettinelli, Jeremie
    ANNALS OF PROBABILITY, 2012, 40 (05): : 1897 - 1944
  • [4] CLASSIFICATION OF SCALING LIMITS OF UNIFORM QUADRANGULATIONS WITH A BOUNDARY
    Baur, Erich
    Miermont, Gregory
    Ray, Gourab
    ANNALS OF PROBABILITY, 2019, 47 (06): : 3397 - 3477
  • [5] Large random planar maps and their scaling limits
    Le Gall, Jean-Francois
    EUROPEAN CONGRESS OF MATHEMATICS 2008, 2010, : 253 - 276
  • [6] THE SCALING LIMIT OF RANDOM SIMPLE TRIANGULATIONS AND RANDOM SIMPLE QUADRANGULATIONS
    Addario-Berry, Louigi
    Albenque, Marie
    ANNALS OF PROBABILITY, 2017, 45 (05): : 2767 - 2825
  • [7] SCALING LIMITS OF RANDOM PLANAR MAPS WITH LARGE FACES
    Le Gall, Jean-Francois
    Miermont, Gregory
    ANNALS OF PROBABILITY, 2011, 39 (01): : 1 - 69
  • [8] SCALING LIMITS OF RANDOM PLANAR MAPS WITH A UNIQUE LARGE FACE
    Janson, Svante
    Stefansson, Sigurdur Orn
    ANNALS OF PROBABILITY, 2015, 43 (03): : 1045 - 1081
  • [9] The Brownian map is the scaling limit of uniform random plane quadrangulations
    Miermont, Gregory
    ACTA MATHEMATICA, 2013, 210 (02) : 319 - 401
  • [10] Two Directed Non-planar Random Networks and Their Scaling Limits
    Azadeh Parvaneh
    Rahul Roy
    Journal of Statistical Physics, 190