On the sphericity of scaling limits of random planar quadrangulations

被引:35
|
作者
Miermont, Gregory [1 ]
机构
[1] Univ Paris 06, F-75013 Paris, France
关键词
random planar maps; scaling limits; Gromov-Hausdorff convergence; spherical topology;
D O I
10.1214/ECP.v13-1368
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We give a new proof of a theorem by Le Gall & Paulin, showing that scaling limits of random planar quadrangulations are homeomorphic to the 2-sphere. The main geometric tool is a reinforcement of the notion of Gromov-Hausdorff convergence, called 1-regular convergence, that preserves topological properties of metric surfaces.
引用
收藏
页码:248 / 257
页数:10
相关论文
共 50 条
  • [31] Backbone scaling limits for random walks on random critical trees
    Ben Arous, Gerard
    Cabezas, Manuel
    Fribergh, Alexander
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2024, 60 (03): : 1814 - 1848
  • [32] SCALING LIMITS FOR POINT RANDOM-FIELDS
    BURTON, RM
    WAYMIRE, E
    JOURNAL OF MULTIVARIATE ANALYSIS, 1984, 15 (02) : 237 - 251
  • [33] The scaling limit of random cubic planar graphs
    Stufler, Benedikt
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2024, 110 (05):
  • [34] Scaling limits for gradient systems in random environment
    Goncalves, Patricia
    Jara, Milton
    JOURNAL OF STATISTICAL PHYSICS, 2008, 131 (04) : 691 - 716
  • [35] Scaling limits for the peeling process on random maps
    Curien, Nicolas
    Le Gall, Jean-Francois
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2017, 53 (01): : 322 - 357
  • [36] RANDOM CURVES, SCALING LIMITS AND LOEWNER EVOLUTIONS
    Kemppainen, Antti
    Smirnov, Stanislav
    ANNALS OF PROBABILITY, 2017, 45 (02): : 698 - 779
  • [37] Convex hulls of random walks and their scaling limits
    Wade, Andrew R.
    Xu, Chang
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2015, 125 (11) : 4300 - 4320
  • [38] Variance asymptotics and scaling limits for random polytopes
    Calka, Pierre
    Yukich, J. E.
    ADVANCES IN MATHEMATICS, 2017, 304 : 1 - 55
  • [39] Scaling limits of random Pólya trees
    Konstantinos Panagiotou
    Benedikt Stufler
    Probability Theory and Related Fields, 2018, 170 : 801 - 820
  • [40] Scaling function in conductivity of planar random checkerboards
    Dalaq, Ahmed Saleh
    Ranganathan, Shivakumar I.
    Ostoja-Starzewski, Martin
    COMPUTATIONAL MATERIALS SCIENCE, 2013, 79 : 252 - 261